Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085657910> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3085657910 abstract "<p><span>The past decades have seen massive advances in generating Earth System observations. A plethora of instruments is, at any point in time, taking remote measurements of the Earth&#8217;s surface aboard satellites. This birds-eye view of the land surface has become invaluable to the climate science and hydrology communities. However, the same variable is often observed by several platforms</span><!-- Add that fragmentation also stems from observing different vars with not comparable measurement techniques, not necessarly ensuring physical consistency VB --><span> with contrasting results and satellite observations have non-trivial patterns of missing values. Consequently, mostly only one remote sensing product is used simultaneously. This and the inherent missingness of the datasets has led to a fragmentation of the observational record that limits the widespread use of remotely sensed land observations. We aim towards a generalized framework for gap-filling global, high-resolution remote sensing measurements relevant for the terrestrial water cycle, focusing on ESA microwave soil moisture, land surface temperature and GPM precipitation. To this end, we explore statistical imputation methods and benchmark them using a &#8220;perfect dataset approach&#8221;, in which we apply the missingness pattern of the remote sensing datasets onto their matching variables in the ERA5 reanalysis data. Original and imputed values are subsequently compared for benchmarking. Our highly modular approach iteratively produces estimates for the missing values and fits a model to the whole dataset, in an expectation-maximisation alike fashion. This procedure is repeated until the estimates for the missing data points converge. The method harnesses the highly-structured nature of gridded covarying observation datasets within the flexible function learning toolbox of data-driven approaches. The imputation utilises (1) the temporal autocorrelation and spatial neighborhood </span><span><em>within</em></span> <!-- Propably italics are not permitted (appart from e.g. species names). Please check --><span>one variable or dataset and (2) the different missingness patterns </span><span><em>across</em></span><span> different variables or datasets, i.e. the fact that if one variable at a given point in space and time is missing, another covarying variable might be observed and their local covariance could be learned</span><!-- Trying to simplify without losing to much content --><span>. A method based on simple ridge regression </span><!-- Depending on where we submit, the audience might not know what ridge regression is --><span>has shown to perform best in terms of results and computational expensiveness and is able to outperform simple &#8220;ad-hoc&#8221; gapfilling procedures. This model, once thoroughly tested, will be applied to gapfill real satellite data and create an inherently consistent dataset that is based exclusively on observations.</span></p>" @default.
- W3085657910 created "2020-09-21" @default.
- W3085657910 creator A5003723319 @default.
- W3085657910 creator A5011579041 @default.
- W3085657910 creator A5085594782 @default.
- W3085657910 date "2020-03-23" @default.
- W3085657910 modified "2023-09-26" @default.
- W3085657910 title "Towards a generalized framework for missing value imputation of fragmented Earth observation data" @default.
- W3085657910 doi "https://doi.org/10.5194/egusphere-egu2020-8823" @default.
- W3085657910 hasPublicationYear "2020" @default.
- W3085657910 type Work @default.
- W3085657910 sameAs 3085657910 @default.
- W3085657910 citedByCount "0" @default.
- W3085657910 crossrefType "posted-content" @default.
- W3085657910 hasAuthorship W3085657910A5003723319 @default.
- W3085657910 hasAuthorship W3085657910A5011579041 @default.
- W3085657910 hasAuthorship W3085657910A5085594782 @default.
- W3085657910 hasConcept C105795698 @default.
- W3085657910 hasConcept C124101348 @default.
- W3085657910 hasConcept C153294291 @default.
- W3085657910 hasConcept C162324750 @default.
- W3085657910 hasConcept C187736073 @default.
- W3085657910 hasConcept C205649164 @default.
- W3085657910 hasConcept C33923547 @default.
- W3085657910 hasConcept C39432304 @default.
- W3085657910 hasConcept C41008148 @default.
- W3085657910 hasConcept C58041806 @default.
- W3085657910 hasConcept C62649853 @default.
- W3085657910 hasConcept C86251818 @default.
- W3085657910 hasConcept C9357733 @default.
- W3085657910 hasConceptScore W3085657910C105795698 @default.
- W3085657910 hasConceptScore W3085657910C124101348 @default.
- W3085657910 hasConceptScore W3085657910C153294291 @default.
- W3085657910 hasConceptScore W3085657910C162324750 @default.
- W3085657910 hasConceptScore W3085657910C187736073 @default.
- W3085657910 hasConceptScore W3085657910C205649164 @default.
- W3085657910 hasConceptScore W3085657910C33923547 @default.
- W3085657910 hasConceptScore W3085657910C39432304 @default.
- W3085657910 hasConceptScore W3085657910C41008148 @default.
- W3085657910 hasConceptScore W3085657910C58041806 @default.
- W3085657910 hasConceptScore W3085657910C62649853 @default.
- W3085657910 hasConceptScore W3085657910C86251818 @default.
- W3085657910 hasConceptScore W3085657910C9357733 @default.
- W3085657910 hasLocation W30856579101 @default.
- W3085657910 hasOpenAccess W3085657910 @default.
- W3085657910 hasPrimaryLocation W30856579101 @default.
- W3085657910 hasRelatedWork W104664696 @default.
- W3085657910 hasRelatedWork W121803457 @default.
- W3085657910 hasRelatedWork W127723025 @default.
- W3085657910 hasRelatedWork W131099012 @default.
- W3085657910 hasRelatedWork W201714030 @default.
- W3085657910 hasRelatedWork W22530028 @default.
- W3085657910 hasRelatedWork W27236641 @default.
- W3085657910 hasRelatedWork W48020629 @default.
- W3085657910 hasRelatedWork W77655545 @default.
- W3085657910 hasRelatedWork W192443443 @default.
- W3085657910 isParatext "false" @default.
- W3085657910 isRetracted "false" @default.
- W3085657910 magId "3085657910" @default.
- W3085657910 workType "article" @default.