Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085756901> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3085756901 endingPage "46" @default.
- W3085756901 startingPage "1" @default.
- W3085756901 abstract "Machine learning methods for computational imaging require uncertainty estimation to be reliable in real settings. While Bayesian models offer a computationally tractable way of recovering uncertainty, they need large data volumes to be trained, which in imaging applications implicates prohibitively expensive collections with specific imaging instruments. This paper introduces a novel framework to train variational inference for inverse problems exploiting in combination few experimentally collected data, domain expertise and existing image data sets. In such a way, Bayesian machine learning models can solve imaging inverse problems with minimal data collection efforts. Extensive simulated experiments show the advantages of the proposed framework. The approach is then applied to two real experimental optics settings: holographic image reconstruction and imaging through highly scattering media. In both settings, state of the art reconstructions are achieved with little collection of training data." @default.
- W3085756901 created "2020-09-21" @default.
- W3085756901 creator A5005343200 @default.
- W3085756901 creator A5017068912 @default.
- W3085756901 creator A5070918132 @default.
- W3085756901 creator A5082496896 @default.
- W3085756901 creator A5083750918 @default.
- W3085756901 date "2020-09-01" @default.
- W3085756901 modified "2023-10-18" @default.
- W3085756901 title "Variational Inference for Computational Imaging Inverse Problems" @default.
- W3085756901 hasPublicationYear "2020" @default.
- W3085756901 type Work @default.
- W3085756901 sameAs 3085756901 @default.
- W3085756901 citedByCount "3" @default.
- W3085756901 countsByYear W30857569012019 @default.
- W3085756901 countsByYear W30857569012021 @default.
- W3085756901 crossrefType "journal-article" @default.
- W3085756901 hasAuthorship W3085756901A5005343200 @default.
- W3085756901 hasAuthorship W3085756901A5017068912 @default.
- W3085756901 hasAuthorship W3085756901A5070918132 @default.
- W3085756901 hasAuthorship W3085756901A5082496896 @default.
- W3085756901 hasAuthorship W3085756901A5083750918 @default.
- W3085756901 hasConcept C107673813 @default.
- W3085756901 hasConcept C11413529 @default.
- W3085756901 hasConcept C119857082 @default.
- W3085756901 hasConcept C134306372 @default.
- W3085756901 hasConcept C135252773 @default.
- W3085756901 hasConcept C154945302 @default.
- W3085756901 hasConcept C160234255 @default.
- W3085756901 hasConcept C2776214188 @default.
- W3085756901 hasConcept C32230216 @default.
- W3085756901 hasConcept C33923547 @default.
- W3085756901 hasConcept C36503486 @default.
- W3085756901 hasConcept C41008148 @default.
- W3085756901 hasConcept C57177791 @default.
- W3085756901 hasConceptScore W3085756901C107673813 @default.
- W3085756901 hasConceptScore W3085756901C11413529 @default.
- W3085756901 hasConceptScore W3085756901C119857082 @default.
- W3085756901 hasConceptScore W3085756901C134306372 @default.
- W3085756901 hasConceptScore W3085756901C135252773 @default.
- W3085756901 hasConceptScore W3085756901C154945302 @default.
- W3085756901 hasConceptScore W3085756901C160234255 @default.
- W3085756901 hasConceptScore W3085756901C2776214188 @default.
- W3085756901 hasConceptScore W3085756901C32230216 @default.
- W3085756901 hasConceptScore W3085756901C33923547 @default.
- W3085756901 hasConceptScore W3085756901C36503486 @default.
- W3085756901 hasConceptScore W3085756901C41008148 @default.
- W3085756901 hasConceptScore W3085756901C57177791 @default.
- W3085756901 hasIssue "179" @default.
- W3085756901 hasLocation W30857569011 @default.
- W3085756901 hasOpenAccess W3085756901 @default.
- W3085756901 hasPrimaryLocation W30857569011 @default.
- W3085756901 hasRelatedWork W1973041412 @default.
- W3085756901 hasRelatedWork W2162596999 @default.
- W3085756901 hasRelatedWork W2187908893 @default.
- W3085756901 hasRelatedWork W2188365844 @default.
- W3085756901 hasRelatedWork W2551928732 @default.
- W3085756901 hasRelatedWork W2788766568 @default.
- W3085756901 hasRelatedWork W2804184144 @default.
- W3085756901 hasRelatedWork W2901328004 @default.
- W3085756901 hasRelatedWork W2942471690 @default.
- W3085756901 hasRelatedWork W2982200288 @default.
- W3085756901 hasRelatedWork W2995639611 @default.
- W3085756901 hasRelatedWork W2996976992 @default.
- W3085756901 hasRelatedWork W3033146475 @default.
- W3085756901 hasRelatedWork W3033523551 @default.
- W3085756901 hasRelatedWork W3102025760 @default.
- W3085756901 hasRelatedWork W3131244094 @default.
- W3085756901 hasRelatedWork W3160809778 @default.
- W3085756901 hasRelatedWork W3179592584 @default.
- W3085756901 hasRelatedWork W153717115 @default.
- W3085756901 hasRelatedWork W1964450643 @default.
- W3085756901 hasVolume "21" @default.
- W3085756901 isParatext "false" @default.
- W3085756901 isRetracted "false" @default.
- W3085756901 magId "3085756901" @default.
- W3085756901 workType "article" @default.