Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085875475> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3085875475 endingPage "6290" @default.
- W3085875475 startingPage "6290" @default.
- W3085875475 abstract "Localization using ultra-wide band (UWB) signals gives accurate position results for indoor localization. The penetrating characteristics of UWB pulses reduce the multipath effects and identify the user position with precise accuracy. In UWB-based localization, the localization accuracy depends on the distance estimation between anchor nodes (ANs) and the UWB tag based on the time of arrival (TOA) of UWB pulses. The TOA errors in the UWB system, reduce the distance estimation accuracy from ANs to the UWB tag and adds the localization error to the system. The position accuracy of a UWB system also depends on the line of sight (LOS) conditions between the UWB anchors and tag, and the computational complexity of localization algorithms used in the UWB system. To overcome these UWB system challenges for indoor localization, we propose a deep learning approach for UWB localization. The proposed deep learning model uses a long short-term memory (LSTM) network for predicting the user position. The proposed LSTM model receives the distance values from TOA-distance model of the UWB system and predicts the current user position. The performance of the proposed LSTM model-based UWB localization system is analyzed in terms of learning rate, optimizer, loss function, batch size, number of hidden nodes, timesteps, and we also compared the mean localization accuracy of the system with different deep learning models and conventional UWB localization approaches. The simulation results show that the proposed UWB localization approach achieved a 7 cm mean localization error as compared to conventional UWB localization approaches." @default.
- W3085875475 created "2020-09-21" @default.
- W3085875475 creator A5063441690 @default.
- W3085875475 creator A5086165395 @default.
- W3085875475 date "2020-09-10" @default.
- W3085875475 modified "2023-10-11" @default.
- W3085875475 title "UWB Indoor Localization Using Deep Learning LSTM Networks" @default.
- W3085875475 cites W1689711448 @default.
- W3085875475 cites W2064675550 @default.
- W3085875475 cites W2104479788 @default.
- W3085875475 cites W2137299697 @default.
- W3085875475 cites W2138930337 @default.
- W3085875475 cites W2139179732 @default.
- W3085875475 cites W2162718622 @default.
- W3085875475 cites W2296766323 @default.
- W3085875475 cites W2402514617 @default.
- W3085875475 cites W2605919849 @default.
- W3085875475 cites W2754051771 @default.
- W3085875475 cites W2777572945 @default.
- W3085875475 cites W2793043725 @default.
- W3085875475 cites W2922174720 @default.
- W3085875475 cites W2922472088 @default.
- W3085875475 cites W2955095732 @default.
- W3085875475 cites W2970014731 @default.
- W3085875475 cites W2970377679 @default.
- W3085875475 cites W2981035489 @default.
- W3085875475 doi "https://doi.org/10.3390/app10186290" @default.
- W3085875475 hasPublicationYear "2020" @default.
- W3085875475 type Work @default.
- W3085875475 sameAs 3085875475 @default.
- W3085875475 citedByCount "65" @default.
- W3085875475 countsByYear W30858754752020 @default.
- W3085875475 countsByYear W30858754752021 @default.
- W3085875475 countsByYear W30858754752022 @default.
- W3085875475 countsByYear W30858754752023 @default.
- W3085875475 crossrefType "journal-article" @default.
- W3085875475 hasAuthorship W3085875475A5063441690 @default.
- W3085875475 hasAuthorship W3085875475A5086165395 @default.
- W3085875475 hasBestOaLocation W30858754751 @default.
- W3085875475 hasConcept C10138342 @default.
- W3085875475 hasConcept C108583219 @default.
- W3085875475 hasConcept C11413529 @default.
- W3085875475 hasConcept C127162648 @default.
- W3085875475 hasConcept C154945302 @default.
- W3085875475 hasConcept C161218011 @default.
- W3085875475 hasConcept C162324750 @default.
- W3085875475 hasConcept C163150518 @default.
- W3085875475 hasConcept C198082294 @default.
- W3085875475 hasConcept C21916231 @default.
- W3085875475 hasConcept C41008148 @default.
- W3085875475 hasConcept C555944384 @default.
- W3085875475 hasConcept C76155785 @default.
- W3085875475 hasConcept C79403827 @default.
- W3085875475 hasConceptScore W3085875475C10138342 @default.
- W3085875475 hasConceptScore W3085875475C108583219 @default.
- W3085875475 hasConceptScore W3085875475C11413529 @default.
- W3085875475 hasConceptScore W3085875475C127162648 @default.
- W3085875475 hasConceptScore W3085875475C154945302 @default.
- W3085875475 hasConceptScore W3085875475C161218011 @default.
- W3085875475 hasConceptScore W3085875475C162324750 @default.
- W3085875475 hasConceptScore W3085875475C163150518 @default.
- W3085875475 hasConceptScore W3085875475C198082294 @default.
- W3085875475 hasConceptScore W3085875475C21916231 @default.
- W3085875475 hasConceptScore W3085875475C41008148 @default.
- W3085875475 hasConceptScore W3085875475C555944384 @default.
- W3085875475 hasConceptScore W3085875475C76155785 @default.
- W3085875475 hasConceptScore W3085875475C79403827 @default.
- W3085875475 hasIssue "18" @default.
- W3085875475 hasLocation W30858754751 @default.
- W3085875475 hasOpenAccess W3085875475 @default.
- W3085875475 hasPrimaryLocation W30858754751 @default.
- W3085875475 hasRelatedWork W1582056261 @default.
- W3085875475 hasRelatedWork W1923525559 @default.
- W3085875475 hasRelatedWork W1987910098 @default.
- W3085875475 hasRelatedWork W2007962165 @default.
- W3085875475 hasRelatedWork W2034110469 @default.
- W3085875475 hasRelatedWork W2115669678 @default.
- W3085875475 hasRelatedWork W2137112572 @default.
- W3085875475 hasRelatedWork W2361640659 @default.
- W3085875475 hasRelatedWork W2811369483 @default.
- W3085875475 hasRelatedWork W3205172395 @default.
- W3085875475 hasVolume "10" @default.
- W3085875475 isParatext "false" @default.
- W3085875475 isRetracted "false" @default.
- W3085875475 magId "3085875475" @default.
- W3085875475 workType "article" @default.