Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085910366> ?p ?o ?g. }
- W3085910366 endingPage "106655" @default.
- W3085910366 startingPage "106655" @default.
- W3085910366 abstract "Carbonation of ultramafic mine tailings has the potential to offset greenhouse gas emissions from mining by trapping CO2 within the crystal structures of Mg-carbonate minerals and hydrotalcite supergroup minerals, which form as weathering products in tailings storage facilities. Here, we present a detailed geochemical and mineralogical assessment of tailings from the Woodsreef Chrysotile Mine, New South Wales, Australia, demonstrating that coupling mineralogical and elemental datasets improves the accuracy of carbon accounting in mined landscapes. Detailed analysis of tailings mineralogy using quantitative X-ray diffraction (XRD) and total carbon analyses reveals that previous assessments of passive mineral carbonation at Woodsreef have been underestimated. Maximum values for the abundance of total carbon (up to 0.4 wt%), as well as the abundances of secondary carbonate minerals (i.e., up to 1.9 wt% hydromagnesite and up to 2.6 wt% pyroaurite, measured with XRD) are observed between approximately 2 cm and 30 cm depth in profiles collected within experimental plots. However, an amorphous Mg-carbonate phase, that cannot be detected using XRD, is also present at comparably high abundances to depths of at least 1 m. This phase is readily observed using scanning electron microscopy, it contributes a measured carbon content of approximately 0.2 wt% at up to 1 m depth, and it has a predominantly atmospheric carbon isotopic signature (F14C > 0.80). We find that using only XRD data results in the sequestered CO2 being underestimated by nearly four times compared to estimates incorporating total carbon measurements, highlighting the important role of amorphous Mg-carbonates in the carbon cycles of mines. Combining XRD and total carbon data, we provide an estimate for passive carbon sequestration by both crystalline and amorphous carbonates in the Woodsreef tailings (11.7 kg CO2/m2, considering the upper 1 m3) and suggest that future studies should employ both XRD and total carbon measurements for carbon accounting. The Woodsreef Chrysotile Mine was also the test site for a field-based geochemical treatment system designed to promote mineral carbonation. A solar powered, independently operating geochemical treatment system is designed and deployed to deliver controlled acid (0.08 M H2SO4) or water leaching treatments, and maintain soil pore saturation within optimal levels (approximately 18–36%) to enhance the weathering rate of mine tailings. While the applied treatment did not accelerate capture and mineralisation of CO2 from air, it could be coupled to technologies that enhance the supply of CO2 for mineral carbonation. We apply our new strategy for carbon accounting to this experimental site in order to assess changes in mineralogy and the spatial scale on which carbon accounting must be done to accurately measure carbon sequestered during weathering of ultramafic rock. Our work provides important lessons and context for future trials of accelerated tailings dissolution and mineral carbonation, which will benefit the next stage of development in the scale-up of this technology." @default.
- W3085910366 created "2020-09-21" @default.
- W3085910366 creator A5000668328 @default.
- W3085910366 creator A5009881013 @default.
- W3085910366 creator A5011973759 @default.
- W3085910366 creator A5024731304 @default.
- W3085910366 creator A5028143373 @default.
- W3085910366 creator A5028733424 @default.
- W3085910366 creator A5055048441 @default.
- W3085910366 creator A5073578640 @default.
- W3085910366 date "2021-01-01" @default.
- W3085910366 modified "2023-10-06" @default.
- W3085910366 title "Carbon accounting of mined landscapes, and deployment of a geochemical treatment system for enhanced weathering at Woodsreef Chrysotile Mine, NSW, Australia" @default.
- W3085910366 cites W166619974 @default.
- W3085910366 cites W1843338631 @default.
- W3085910366 cites W1963965807 @default.
- W3085910366 cites W1966878594 @default.
- W3085910366 cites W1973518565 @default.
- W3085910366 cites W1986266710 @default.
- W3085910366 cites W2003798627 @default.
- W3085910366 cites W2005773227 @default.
- W3085910366 cites W2009428627 @default.
- W3085910366 cites W2015661959 @default.
- W3085910366 cites W2016260972 @default.
- W3085910366 cites W2033047492 @default.
- W3085910366 cites W2037180886 @default.
- W3085910366 cites W2039139356 @default.
- W3085910366 cites W2041360761 @default.
- W3085910366 cites W2041577694 @default.
- W3085910366 cites W2043097350 @default.
- W3085910366 cites W2043697295 @default.
- W3085910366 cites W2044328050 @default.
- W3085910366 cites W2047946709 @default.
- W3085910366 cites W2050339905 @default.
- W3085910366 cites W2061477982 @default.
- W3085910366 cites W2065210248 @default.
- W3085910366 cites W2069495732 @default.
- W3085910366 cites W2071576644 @default.
- W3085910366 cites W2078324282 @default.
- W3085910366 cites W2099003575 @default.
- W3085910366 cites W2104664138 @default.
- W3085910366 cites W2109135071 @default.
- W3085910366 cites W2116640742 @default.
- W3085910366 cites W2140739065 @default.
- W3085910366 cites W2141630701 @default.
- W3085910366 cites W2154352365 @default.
- W3085910366 cites W2157745353 @default.
- W3085910366 cites W2160468086 @default.
- W3085910366 cites W2197014084 @default.
- W3085910366 cites W2252636846 @default.
- W3085910366 cites W2296502120 @default.
- W3085910366 cites W2301516029 @default.
- W3085910366 cites W2317583729 @default.
- W3085910366 cites W2322274204 @default.
- W3085910366 cites W2325449305 @default.
- W3085910366 cites W2326806776 @default.
- W3085910366 cites W2419142277 @default.
- W3085910366 cites W2550962652 @default.
- W3085910366 cites W2592114930 @default.
- W3085910366 cites W2597356166 @default.
- W3085910366 cites W2606497732 @default.
- W3085910366 cites W2621070700 @default.
- W3085910366 cites W2624887288 @default.
- W3085910366 cites W2764276006 @default.
- W3085910366 cites W2789325428 @default.
- W3085910366 cites W2806183566 @default.
- W3085910366 cites W2894825906 @default.
- W3085910366 cites W2897606917 @default.
- W3085910366 cites W2915167581 @default.
- W3085910366 cites W2996384151 @default.
- W3085910366 cites W3012217150 @default.
- W3085910366 cites W3025149098 @default.
- W3085910366 cites W4294555410 @default.
- W3085910366 cites W755437216 @default.
- W3085910366 doi "https://doi.org/10.1016/j.gexplo.2020.106655" @default.
- W3085910366 hasPublicationYear "2021" @default.
- W3085910366 type Work @default.
- W3085910366 sameAs 3085910366 @default.
- W3085910366 citedByCount "3" @default.
- W3085910366 countsByYear W30859103662022 @default.
- W3085910366 countsByYear W30859103662023 @default.
- W3085910366 crossrefType "journal-article" @default.
- W3085910366 hasAuthorship W3085910366A5000668328 @default.
- W3085910366 hasAuthorship W3085910366A5009881013 @default.
- W3085910366 hasAuthorship W3085910366A5011973759 @default.
- W3085910366 hasAuthorship W3085910366A5024731304 @default.
- W3085910366 hasAuthorship W3085910366A5028143373 @default.
- W3085910366 hasAuthorship W3085910366A5028733424 @default.
- W3085910366 hasAuthorship W3085910366A5055048441 @default.
- W3085910366 hasAuthorship W3085910366A5073578640 @default.
- W3085910366 hasConcept C104779481 @default.
- W3085910366 hasConcept C107872376 @default.
- W3085910366 hasConcept C10912530 @default.
- W3085910366 hasConcept C120809312 @default.
- W3085910366 hasConcept C127313418 @default.
- W3085910366 hasConcept C140205800 @default.
- W3085910366 hasConcept C151730666 @default.
- W3085910366 hasConcept C159985019 @default.