Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086017879> ?p ?o ?g. }
- W3086017879 endingPage "5507" @default.
- W3086017879 startingPage "5489" @default.
- W3086017879 abstract "Road extraction from high-resolution remote sensing images is a challenging but hot research topic in the past decades. A large number of methods are invented to deal with this problem. This article provides a comprehensive review of these existing approaches. We classified the methods into heuristic and data-driven. The heuristic methods are the mainstream in the early years, and the data-driven methods based on deep learning have been quickly developed recently. With regard to the heuristic methods, the road feature model is first introduced, then, the classic extraction methods are reviewed in two subcategories: semiautomatic and automatic. The principles, inspirations, advantages, and disadvantages of these methods are described. In terms of the data-driven methods, the road extraction methods based on deep neural network, particularly those based on patched convolutional neural network, fully convolutional network, and generative adversarial network are reviewed. We perform subjective comparisons between the methods inner each type. Furthermore, the quantity performances achieved on the same dataset are compared between the heuristic and data-driven methods to show the strengthening of the data-driven methods. Finally, the conclusion and prospects are summarized." @default.
- W3086017879 created "2020-09-21" @default.
- W3086017879 creator A5061950391 @default.
- W3086017879 creator A5067280584 @default.
- W3086017879 creator A5068828987 @default.
- W3086017879 creator A5073494285 @default.
- W3086017879 date "2020-01-01" @default.
- W3086017879 modified "2023-10-06" @default.
- W3086017879 title "Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review" @default.
- W3086017879 cites W1425633829 @default.
- W3086017879 cites W1479775735 @default.
- W3086017879 cites W1506940450 @default.
- W3086017879 cites W1508404128 @default.
- W3086017879 cites W1535289548 @default.
- W3086017879 cites W1837697898 @default.
- W3086017879 cites W1903029394 @default.
- W3086017879 cites W1964038289 @default.
- W3086017879 cites W1965176928 @default.
- W3086017879 cites W1968879477 @default.
- W3086017879 cites W1973235766 @default.
- W3086017879 cites W1974097572 @default.
- W3086017879 cites W1974392489 @default.
- W3086017879 cites W1979784968 @default.
- W3086017879 cites W1981329364 @default.
- W3086017879 cites W1982574519 @default.
- W3086017879 cites W1984288883 @default.
- W3086017879 cites W1995030392 @default.
- W3086017879 cites W1998604612 @default.
- W3086017879 cites W2000666616 @default.
- W3086017879 cites W2017980693 @default.
- W3086017879 cites W2020173703 @default.
- W3086017879 cites W2021066071 @default.
- W3086017879 cites W2022902702 @default.
- W3086017879 cites W2024918151 @default.
- W3086017879 cites W2029377763 @default.
- W3086017879 cites W2050560048 @default.
- W3086017879 cites W2053077052 @default.
- W3086017879 cites W2060095247 @default.
- W3086017879 cites W2061240006 @default.
- W3086017879 cites W2086141297 @default.
- W3086017879 cites W2087252944 @default.
- W3086017879 cites W2093680168 @default.
- W3086017879 cites W2097375363 @default.
- W3086017879 cites W2098180043 @default.
- W3086017879 cites W2098758111 @default.
- W3086017879 cites W2100495367 @default.
- W3086017879 cites W2101993754 @default.
- W3086017879 cites W2104095591 @default.
- W3086017879 cites W2104125540 @default.
- W3086017879 cites W2104366350 @default.
- W3086017879 cites W2107739064 @default.
- W3086017879 cites W2112796928 @default.
- W3086017879 cites W2118246710 @default.
- W3086017879 cites W2119531662 @default.
- W3086017879 cites W2124841042 @default.
- W3086017879 cites W2132267679 @default.
- W3086017879 cites W2135431554 @default.
- W3086017879 cites W2138317821 @default.
- W3086017879 cites W2150428615 @default.
- W3086017879 cites W2154874087 @default.
- W3086017879 cites W2155226776 @default.
- W3086017879 cites W2155806169 @default.
- W3086017879 cites W2156044350 @default.
- W3086017879 cites W2156438061 @default.
- W3086017879 cites W2159960241 @default.
- W3086017879 cites W2165661463 @default.
- W3086017879 cites W2167069501 @default.
- W3086017879 cites W2171052955 @default.
- W3086017879 cites W2172011810 @default.
- W3086017879 cites W2205800717 @default.
- W3086017879 cites W2293105860 @default.
- W3086017879 cites W2302086703 @default.
- W3086017879 cites W2345157853 @default.
- W3086017879 cites W2387730615 @default.
- W3086017879 cites W2395811491 @default.
- W3086017879 cites W2464204616 @default.
- W3086017879 cites W2465439865 @default.
- W3086017879 cites W2466601562 @default.
- W3086017879 cites W2511042364 @default.
- W3086017879 cites W2536190202 @default.
- W3086017879 cites W2547880720 @default.
- W3086017879 cites W2559597482 @default.
- W3086017879 cites W2566121015 @default.
- W3086017879 cites W2567758704 @default.
- W3086017879 cites W2593886839 @default.
- W3086017879 cites W2594203750 @default.
- W3086017879 cites W2595659188 @default.
- W3086017879 cites W2595964094 @default.
- W3086017879 cites W2609825896 @default.
- W3086017879 cites W2618083869 @default.
- W3086017879 cites W2620899671 @default.
- W3086017879 cites W2622445050 @default.
- W3086017879 cites W2623490820 @default.
- W3086017879 cites W2743136947 @default.
- W3086017879 cites W2770697187 @default.
- W3086017879 cites W2772415238 @default.
- W3086017879 cites W2774320778 @default.
- W3086017879 cites W2780861787 @default.