Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086056576> ?p ?o ?g. }
- W3086056576 endingPage "103359" @default.
- W3086056576 startingPage "103359" @default.
- W3086056576 abstract "The uptake of machine learning (ML) algorithms in digital soil mapping (DSM) is transforming the way soil scientists produce their maps. Within the past two decades, soil scientists have applied ML to a wide range of scenarios, by mapping soil properties or classes with various ML algorithms, on spatial scale from the local to the global, and with depth. The wide adoption of ML for soil mapping was made possible by the increase in data availability, the ease of accessing environmental spatial data, and the development of software solutions aided by computational tools to analyse them. In this article, we review the current use of ML in DSM, identify the key challenges and suggest solutions from the existing literature. There is a growing interest in the use of ML in DSM. Most studies emphasize prediction and accuracy of the predicted maps for applications, such as baseline production of quantitative soil information. Few studies account for existing soil knowledge in the modelling process or quantify the uncertainty of the predicted maps. Further, we discuss the challenges related to the application of ML for soil mapping and suggest solutions from existing studies in the natural sciences. The challenges are: sampling, resampling, accounting for the spatial information, multivariate mapping, uncertainty analysis, validation, integration of pedological knowledge and interpretation of the models. Overall, the current literature shows few attempts in understanding the underlying soil structure or process using the predicted maps and the ML model, for example by generating hypotheses on mechanistic relationships among variables. In this regard, several additional challenging aspects need to be considered, such as the inclusion of pedological knowledge in the ML algorithm or the interpretability of the calibrated ML model. Tackling these challenges is critical for ML to gain credibility and scientific consistency in soil science. We conclude that for future developments, ML could incorporate three core elements: plausibility, interpretability, and explainability, which will trigger soil scientists to couple model prediction with pedological explanation and understanding of the underlying soil processes." @default.
- W3086056576 created "2020-09-21" @default.
- W3086056576 creator A5049220423 @default.
- W3086056576 creator A5051455406 @default.
- W3086056576 creator A5082701259 @default.
- W3086056576 date "2020-11-01" @default.
- W3086056576 modified "2023-10-14" @default.
- W3086056576 title "Machine learning for digital soil mapping: Applications, challenges and suggested solutions" @default.
- W3086056576 cites W1471436312 @default.
- W3086056576 cites W1505750693 @default.
- W3086056576 cites W1524392826 @default.
- W3086056576 cites W1527009353 @default.
- W3086056576 cites W1552391680 @default.
- W3086056576 cites W1678773451 @default.
- W3086056576 cites W18678914 @default.
- W3086056576 cites W1869471023 @default.
- W3086056576 cites W1891744174 @default.
- W3086056576 cites W1972617376 @default.
- W3086056576 cites W1979286891 @default.
- W3086056576 cites W1980452149 @default.
- W3086056576 cites W1980753477 @default.
- W3086056576 cites W1984338772 @default.
- W3086056576 cites W1985554128 @default.
- W3086056576 cites W1985642751 @default.
- W3086056576 cites W1988748730 @default.
- W3086056576 cites W1989631626 @default.
- W3086056576 cites W1990457187 @default.
- W3086056576 cites W1991496971 @default.
- W3086056576 cites W1998293939 @default.
- W3086056576 cites W2000046295 @default.
- W3086056576 cites W2000356578 @default.
- W3086056576 cites W2013729812 @default.
- W3086056576 cites W2014451925 @default.
- W3086056576 cites W2019894796 @default.
- W3086056576 cites W2024141630 @default.
- W3086056576 cites W2027160099 @default.
- W3086056576 cites W2032793895 @default.
- W3086056576 cites W2033275656 @default.
- W3086056576 cites W2034841631 @default.
- W3086056576 cites W2035549409 @default.
- W3086056576 cites W2037996624 @default.
- W3086056576 cites W2039660802 @default.
- W3086056576 cites W2045679230 @default.
- W3086056576 cites W2054325787 @default.
- W3086056576 cites W2055368398 @default.
- W3086056576 cites W2057779644 @default.
- W3086056576 cites W2059542853 @default.
- W3086056576 cites W2062409382 @default.
- W3086056576 cites W2074414809 @default.
- W3086056576 cites W2076563147 @default.
- W3086056576 cites W2078712779 @default.
- W3086056576 cites W2079770016 @default.
- W3086056576 cites W2081340599 @default.
- W3086056576 cites W2084341220 @default.
- W3086056576 cites W2089097786 @default.
- W3086056576 cites W2095448508 @default.
- W3086056576 cites W2100761231 @default.
- W3086056576 cites W2106074416 @default.
- W3086056576 cites W2107945928 @default.
- W3086056576 cites W2115305054 @default.
- W3086056576 cites W2116551969 @default.
- W3086056576 cites W2117416558 @default.
- W3086056576 cites W2118978333 @default.
- W3086056576 cites W2125847307 @default.
- W3086056576 cites W2130089609 @default.
- W3086056576 cites W2130560194 @default.
- W3086056576 cites W2130956715 @default.
- W3086056576 cites W2133505387 @default.
- W3086056576 cites W2144048451 @default.
- W3086056576 cites W2152011218 @default.
- W3086056576 cites W2153944160 @default.
- W3086056576 cites W2170498858 @default.
- W3086056576 cites W2179669825 @default.
- W3086056576 cites W2186294614 @default.
- W3086056576 cites W2191676425 @default.
- W3086056576 cites W2196593491 @default.
- W3086056576 cites W2224936358 @default.
- W3086056576 cites W2234929136 @default.
- W3086056576 cites W2256438753 @default.
- W3086056576 cites W2274117189 @default.
- W3086056576 cites W2308925226 @default.
- W3086056576 cites W2343002501 @default.
- W3086056576 cites W2405720079 @default.
- W3086056576 cites W2424258070 @default.
- W3086056576 cites W2518643351 @default.
- W3086056576 cites W2527889223 @default.
- W3086056576 cites W2531213996 @default.
- W3086056576 cites W2532520249 @default.
- W3086056576 cites W2542193189 @default.
- W3086056576 cites W2549899276 @default.
- W3086056576 cites W2560136348 @default.
- W3086056576 cites W2567805992 @default.
- W3086056576 cites W2582794771 @default.
- W3086056576 cites W2588003345 @default.
- W3086056576 cites W2589872536 @default.
- W3086056576 cites W2590668453 @default.
- W3086056576 cites W2593870237 @default.
- W3086056576 cites W2598382903 @default.