Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086174161> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3086174161 endingPage "169575" @default.
- W3086174161 startingPage "169568" @default.
- W3086174161 abstract "The most important way several people communicate is through speech. Speech is used to convey other information such as speaker communication, emotion, and attitude. Therefore, it is the most convenient and natural means of communication. The concept of speech segregation or processing involves sorting out wanted speech from noises in the background. Recently, a supervised learning approach was formulated for speech segregation problems. The latest trend in speech processing comprises the utilization of deep learning systems to increase the computational speed and performance of speech processing tasks. Hence, this study employed the use of a convolutional neural network to segregate speech in background noise. The convolutional neural network was used to explain the features of presenter auditory and consecutive subtleties. An unadapted speaker model was originally utilized to separate the two vocalizations gestures; they were then applied to the assessed signal-to-noise ratio (SNR) participation. The participation of SNR was thereafter applied to modify the speaker prototypes for re-estimating the speech signals that iterated twice before convergence. The developed method was tested on the TIMIT dataset. The results showed the strength of the developed method for speech segregation in background noise. Also, the findings of the study suggested that the method enhanced isolation performance and congregated reasonably fast. It was deduced that the system is simple and performs better in comparison to ultramodern speech processing methods in some input SNR conditions." @default.
- W3086174161 created "2020-09-21" @default.
- W3086174161 creator A5023123003 @default.
- W3086174161 creator A5071054943 @default.
- W3086174161 creator A5085915629 @default.
- W3086174161 creator A5089229270 @default.
- W3086174161 date "2020-01-01" @default.
- W3086174161 modified "2023-10-16" @default.
- W3086174161 title "Speech Segregation in Background Noise Based on Deep Learning" @default.
- W3086174161 cites W1546979199 @default.
- W3086174161 cites W1991139021 @default.
- W3086174161 cites W2013563614 @default.
- W3086174161 cites W2059203007 @default.
- W3086174161 cites W2088361146 @default.
- W3086174161 cites W2112796928 @default.
- W3086174161 cites W2119901478 @default.
- W3086174161 cites W2135749912 @default.
- W3086174161 cites W2197404611 @default.
- W3086174161 cites W2578331995 @default.
- W3086174161 cites W2587994092 @default.
- W3086174161 cites W2644497536 @default.
- W3086174161 cites W2704368076 @default.
- W3086174161 cites W2731392307 @default.
- W3086174161 cites W2745732459 @default.
- W3086174161 cites W2746601360 @default.
- W3086174161 cites W2765084224 @default.
- W3086174161 cites W2791602430 @default.
- W3086174161 cites W2902894493 @default.
- W3086174161 cites W2952979574 @default.
- W3086174161 cites W2954986968 @default.
- W3086174161 cites W2962866211 @default.
- W3086174161 cites W2993229155 @default.
- W3086174161 cites W3017765730 @default.
- W3086174161 cites W2305531151 @default.
- W3086174161 doi "https://doi.org/10.1109/access.2020.3024077" @default.
- W3086174161 hasPublicationYear "2020" @default.
- W3086174161 type Work @default.
- W3086174161 sameAs 3086174161 @default.
- W3086174161 citedByCount "10" @default.
- W3086174161 countsByYear W30861741612021 @default.
- W3086174161 countsByYear W30861741612022 @default.
- W3086174161 countsByYear W30861741612023 @default.
- W3086174161 crossrefType "journal-article" @default.
- W3086174161 hasAuthorship W3086174161A5023123003 @default.
- W3086174161 hasAuthorship W3086174161A5071054943 @default.
- W3086174161 hasAuthorship W3086174161A5085915629 @default.
- W3086174161 hasAuthorship W3086174161A5089229270 @default.
- W3086174161 hasBestOaLocation W30861741611 @default.
- W3086174161 hasConcept C100675267 @default.
- W3086174161 hasConcept C108583219 @default.
- W3086174161 hasConcept C115961682 @default.
- W3086174161 hasConcept C154945302 @default.
- W3086174161 hasConcept C163294075 @default.
- W3086174161 hasConcept C23224414 @default.
- W3086174161 hasConcept C2776182073 @default.
- W3086174161 hasConcept C2778724510 @default.
- W3086174161 hasConcept C28490314 @default.
- W3086174161 hasConcept C41008148 @default.
- W3086174161 hasConcept C50644808 @default.
- W3086174161 hasConcept C61328038 @default.
- W3086174161 hasConcept C76155785 @default.
- W3086174161 hasConcept C81363708 @default.
- W3086174161 hasConcept C99498987 @default.
- W3086174161 hasConceptScore W3086174161C100675267 @default.
- W3086174161 hasConceptScore W3086174161C108583219 @default.
- W3086174161 hasConceptScore W3086174161C115961682 @default.
- W3086174161 hasConceptScore W3086174161C154945302 @default.
- W3086174161 hasConceptScore W3086174161C163294075 @default.
- W3086174161 hasConceptScore W3086174161C23224414 @default.
- W3086174161 hasConceptScore W3086174161C2776182073 @default.
- W3086174161 hasConceptScore W3086174161C2778724510 @default.
- W3086174161 hasConceptScore W3086174161C28490314 @default.
- W3086174161 hasConceptScore W3086174161C41008148 @default.
- W3086174161 hasConceptScore W3086174161C50644808 @default.
- W3086174161 hasConceptScore W3086174161C61328038 @default.
- W3086174161 hasConceptScore W3086174161C76155785 @default.
- W3086174161 hasConceptScore W3086174161C81363708 @default.
- W3086174161 hasConceptScore W3086174161C99498987 @default.
- W3086174161 hasLocation W30861741611 @default.
- W3086174161 hasOpenAccess W3086174161 @default.
- W3086174161 hasPrimaryLocation W30861741611 @default.
- W3086174161 hasRelatedWork W1502314398 @default.
- W3086174161 hasRelatedWork W2100854157 @default.
- W3086174161 hasRelatedWork W2158907608 @default.
- W3086174161 hasRelatedWork W2361678312 @default.
- W3086174161 hasRelatedWork W2408662956 @default.
- W3086174161 hasRelatedWork W2485008119 @default.
- W3086174161 hasRelatedWork W266272917 @default.
- W3086174161 hasRelatedWork W2978471304 @default.
- W3086174161 hasRelatedWork W3086174161 @default.
- W3086174161 hasRelatedWork W4247725880 @default.
- W3086174161 hasVolume "8" @default.
- W3086174161 isParatext "false" @default.
- W3086174161 isRetracted "false" @default.
- W3086174161 magId "3086174161" @default.
- W3086174161 workType "article" @default.