Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086177588> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3086177588 endingPage "233" @default.
- W3086177588 startingPage "233" @default.
- W3086177588 abstract "The recent advancements in cancer genomics have put under the spotlight DNA methylation, a genetic modification that regulates the functioning of the genome and whose modifications have an important role in tumorigenesis and tumor-suppression. Because of the high dimensionality and the enormous amount of genomic data that are produced through the last advancements in Next Generation Sequencing, it is very challenging to effectively make use of DNA methylation data in diagnostics applications, e.g., in the identification of healthy vs diseased samples. Additionally, state-of-the-art techniques are not fast enough to rapidly produce reliable results or efficient in managing those massive amounts of data. For this reason, we propose HD-classifier, an in-memory cognitive-based hyperdimensional (HD) supervised machine learning algorithm for the classification of tumor vs non tumor samples through the analysis of their DNA Methylation data. The approach takes inspiration from how the human brain is able to remember and distinguish simple and complex concepts by adopting hypervectors and no single numerical values. Exactly as the brain works, this allows for encoding complex patterns, which makes the whole architecture robust to failures and mistakes also with noisy data. We design and develop an algorithm and a software tool that is able to perform supervised classification with the HD approach. We conduct experiments on three DNA methylation datasets of different types of cancer in order to prove the validity of our algorithm, i.e., Breast Invasive Carcinoma (BRCA), Kidney renal papillary cell carcinoma (KIRP), and Thyroid carcinoma (THCA). We obtain outstanding results in terms of accuracy and computational time with a low amount of computational resources. Furthermore, we validate our approach by comparing it (i) to BIGBIOCL, a software based on Random Forest for classifying big omics datasets in distributed computing environments, (ii) to Support Vector Machine (SVM), and (iii) to Decision Tree state-of-the-art classification methods. Finally, we freely release both the datasets and the software on GitHub." @default.
- W3086177588 created "2020-09-21" @default.
- W3086177588 creator A5005597720 @default.
- W3086177588 creator A5010164802 @default.
- W3086177588 creator A5082716571 @default.
- W3086177588 date "2020-09-17" @default.
- W3086177588 modified "2023-09-29" @default.
- W3086177588 title "A Brain-Inspired Hyperdimensional Computing Approach for Classifying Massive DNA Methylation Data of Cancer" @default.
- W3086177588 cites W1882502294 @default.
- W3086177588 cites W1990097247 @default.
- W3086177588 cites W1994493099 @default.
- W3086177588 cites W1999574084 @default.
- W3086177588 cites W2005129098 @default.
- W3086177588 cites W2017952818 @default.
- W3086177588 cites W2040789308 @default.
- W3086177588 cites W2056040742 @default.
- W3086177588 cites W2067657601 @default.
- W3086177588 cites W2070862086 @default.
- W3086177588 cites W2084118479 @default.
- W3086177588 cites W2094395530 @default.
- W3086177588 cites W2121417064 @default.
- W3086177588 cites W2133990480 @default.
- W3086177588 cites W2158485828 @default.
- W3086177588 cites W2175762584 @default.
- W3086177588 cites W2510208044 @default.
- W3086177588 cites W2541780970 @default.
- W3086177588 cites W2586862787 @default.
- W3086177588 cites W2623410148 @default.
- W3086177588 cites W2791344571 @default.
- W3086177588 cites W2803117744 @default.
- W3086177588 cites W2898361614 @default.
- W3086177588 cites W2967927776 @default.
- W3086177588 cites W3105115497 @default.
- W3086177588 cites W4296886862 @default.
- W3086177588 doi "https://doi.org/10.3390/a13090233" @default.
- W3086177588 hasPublicationYear "2020" @default.
- W3086177588 type Work @default.
- W3086177588 sameAs 3086177588 @default.
- W3086177588 citedByCount "7" @default.
- W3086177588 countsByYear W30861775882021 @default.
- W3086177588 countsByYear W30861775882022 @default.
- W3086177588 countsByYear W30861775882023 @default.
- W3086177588 crossrefType "journal-article" @default.
- W3086177588 hasAuthorship W3086177588A5005597720 @default.
- W3086177588 hasAuthorship W3086177588A5010164802 @default.
- W3086177588 hasAuthorship W3086177588A5082716571 @default.
- W3086177588 hasBestOaLocation W30861775881 @default.
- W3086177588 hasConcept C104317684 @default.
- W3086177588 hasConcept C121608353 @default.
- W3086177588 hasConcept C141231307 @default.
- W3086177588 hasConcept C150194340 @default.
- W3086177588 hasConcept C154945302 @default.
- W3086177588 hasConcept C189206191 @default.
- W3086177588 hasConcept C190727270 @default.
- W3086177588 hasConcept C33288867 @default.
- W3086177588 hasConcept C41008148 @default.
- W3086177588 hasConcept C54355233 @default.
- W3086177588 hasConcept C552990157 @default.
- W3086177588 hasConcept C555283112 @default.
- W3086177588 hasConcept C70721500 @default.
- W3086177588 hasConcept C86803240 @default.
- W3086177588 hasConcept C95623464 @default.
- W3086177588 hasConceptScore W3086177588C104317684 @default.
- W3086177588 hasConceptScore W3086177588C121608353 @default.
- W3086177588 hasConceptScore W3086177588C141231307 @default.
- W3086177588 hasConceptScore W3086177588C150194340 @default.
- W3086177588 hasConceptScore W3086177588C154945302 @default.
- W3086177588 hasConceptScore W3086177588C189206191 @default.
- W3086177588 hasConceptScore W3086177588C190727270 @default.
- W3086177588 hasConceptScore W3086177588C33288867 @default.
- W3086177588 hasConceptScore W3086177588C41008148 @default.
- W3086177588 hasConceptScore W3086177588C54355233 @default.
- W3086177588 hasConceptScore W3086177588C552990157 @default.
- W3086177588 hasConceptScore W3086177588C555283112 @default.
- W3086177588 hasConceptScore W3086177588C70721500 @default.
- W3086177588 hasConceptScore W3086177588C86803240 @default.
- W3086177588 hasConceptScore W3086177588C95623464 @default.
- W3086177588 hasIssue "9" @default.
- W3086177588 hasLocation W30861775881 @default.
- W3086177588 hasLocation W30861775882 @default.
- W3086177588 hasOpenAccess W3086177588 @default.
- W3086177588 hasPrimaryLocation W30861775881 @default.
- W3086177588 hasRelatedWork W1942624055 @default.
- W3086177588 hasRelatedWork W1987760376 @default.
- W3086177588 hasRelatedWork W2021720525 @default.
- W3086177588 hasRelatedWork W2068071476 @default.
- W3086177588 hasRelatedWork W2077518922 @default.
- W3086177588 hasRelatedWork W2163306634 @default.
- W3086177588 hasRelatedWork W2745115887 @default.
- W3086177588 hasRelatedWork W2887851388 @default.
- W3086177588 hasRelatedWork W3031521890 @default.
- W3086177588 hasRelatedWork W3174565000 @default.
- W3086177588 hasVolume "13" @default.
- W3086177588 isParatext "false" @default.
- W3086177588 isRetracted "false" @default.
- W3086177588 magId "3086177588" @default.
- W3086177588 workType "article" @default.