Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086220804> ?p ?o ?g. }
- W3086220804 endingPage "704" @default.
- W3086220804 startingPage "693" @default.
- W3086220804 abstract "Sensor scheduling for energy-efficient collaborative target tracking in wireless sensor networks (WSNs) is an important problem to deal with the limited network resources. With the recent development and emerging applications of energy acquisition technologies, it has become possible to overcome the bottleneck of battery energy in WSNs using the energy harvesting devices, where theoretically the lifetime of the network could be extended to the infinite. However, the energy harvesting WSN also poses new challenges for sensor scheduling algorithm over the infinite horizon under the limited sensor energy harvesting capabilities. In this article, a novel multistep prediction-based adaptive dynamic programming (MSPADP) approach is proposed for collaborative target tracking in energy harvesting WSNs to schedule sensors over an infinite horizon, according to the ADP mechanism. The “action” module of MSPADP is designed to obtain the sensor scheduling for multiple steps starting from the current step, and implemented by the minimal-cost first search (MCFS) decision tree scheme, and the “critic network” module of MSPADP is iteratively performed to optimize the performance for the remaining infinite steps using neural network. Extended Kalman filter (EKF) is adopted to predict and estimate the target state. The performance index is defined by the tracking accuracy derived from EKF and the energy consumption predicted by the candidate sensor schedule. Theoretical analysis shows the optimality of MSPADP, and simulation results demonstrate its superior tracking performance compared with single-step prediction-based ADP (SSPADP), multistep prediction-based dynamic programming (MSPDP), and multistep prediction-based pruning (MSPP) sensor scheduling approaches. Note to Practitioners-Collaborative target tracking is a typical problem in wireless sensor networks (WSNs) where the sensors need to be scheduled to address the constraints of the limited network resources, such as sensor energy usually supplied by the battery. In the recent years, energy harvesting device has been developed and applied to WSNs to overcome the energy restriction. As the energy harvesting capabilities of the sensors are limited, sensor scheduling remains as a challenging problem and is studied in this article. A novel multistep prediction-based adaptive dynamic programming (MSPADP) approach is proposed for collaborative target tracking, by scheduling sensors for the current time step based on the predictions of the subsequent steps over an infinite horizon. It runs iteratively in two modules: obtaining the previous optimal multistep sensor scheduling and updating the remaining infinite-step performance. Simulation results show its superior tracking performance compared with single-step prediction-based ADP (SSPADP), multistep prediction-based dynamic programming (MSPDP), and multistep prediction-based pruning (MSPP) approaches, and lay a good foundation for the practical applications." @default.
- W3086220804 created "2020-09-21" @default.
- W3086220804 creator A5009298813 @default.
- W3086220804 creator A5025288570 @default.
- W3086220804 creator A5061188546 @default.
- W3086220804 date "2021-04-01" @default.
- W3086220804 modified "2023-10-16" @default.
- W3086220804 title "Multistep Prediction-Based Adaptive Dynamic Programming Sensor Scheduling Approach for Collaborative Target Tracking in Energy Harvesting Wireless Sensor Networks" @default.
- W3086220804 cites W1543795856 @default.
- W3086220804 cites W1964549822 @default.
- W3086220804 cites W1971855824 @default.
- W3086220804 cites W1989497967 @default.
- W3086220804 cites W1992061111 @default.
- W3086220804 cites W2018659593 @default.
- W3086220804 cites W2025911940 @default.
- W3086220804 cites W2061171824 @default.
- W3086220804 cites W2080504737 @default.
- W3086220804 cites W2082498590 @default.
- W3086220804 cites W2083402998 @default.
- W3086220804 cites W2116299102 @default.
- W3086220804 cites W2124089205 @default.
- W3086220804 cites W2143667229 @default.
- W3086220804 cites W2169158715 @default.
- W3086220804 cites W2189990206 @default.
- W3086220804 cites W2249513906 @default.
- W3086220804 cites W2346521341 @default.
- W3086220804 cites W2482349636 @default.
- W3086220804 cites W2570163643 @default.
- W3086220804 cites W2589589874 @default.
- W3086220804 cites W2590862604 @default.
- W3086220804 cites W2608518383 @default.
- W3086220804 cites W2615152462 @default.
- W3086220804 cites W2751182961 @default.
- W3086220804 cites W2756081914 @default.
- W3086220804 cites W2809747090 @default.
- W3086220804 cites W2810851039 @default.
- W3086220804 cites W2811282351 @default.
- W3086220804 cites W2885245712 @default.
- W3086220804 cites W2888613768 @default.
- W3086220804 cites W2889892954 @default.
- W3086220804 cites W2892277620 @default.
- W3086220804 cites W2900952493 @default.
- W3086220804 cites W2907186756 @default.
- W3086220804 cites W2921462284 @default.
- W3086220804 cites W2929206366 @default.
- W3086220804 cites W2942044637 @default.
- W3086220804 cites W2944734899 @default.
- W3086220804 cites W2947022728 @default.
- W3086220804 cites W2954935583 @default.
- W3086220804 cites W2955184042 @default.
- W3086220804 cites W2955505714 @default.
- W3086220804 cites W2964016615 @default.
- W3086220804 cites W2965509979 @default.
- W3086220804 cites W2972900020 @default.
- W3086220804 cites W2986724650 @default.
- W3086220804 cites W2995742686 @default.
- W3086220804 cites W3104345178 @default.
- W3086220804 cites W640031811 @default.
- W3086220804 doi "https://doi.org/10.1109/tase.2020.3019567" @default.
- W3086220804 hasPublicationYear "2021" @default.
- W3086220804 type Work @default.
- W3086220804 sameAs 3086220804 @default.
- W3086220804 citedByCount "19" @default.
- W3086220804 countsByYear W30862208042021 @default.
- W3086220804 countsByYear W30862208042022 @default.
- W3086220804 countsByYear W30862208042023 @default.
- W3086220804 crossrefType "journal-article" @default.
- W3086220804 hasAuthorship W3086220804A5009298813 @default.
- W3086220804 hasAuthorship W3086220804A5025288570 @default.
- W3086220804 hasAuthorship W3086220804A5061188546 @default.
- W3086220804 hasConcept C101518730 @default.
- W3086220804 hasConcept C105795698 @default.
- W3086220804 hasConcept C108037233 @default.
- W3086220804 hasConcept C111919701 @default.
- W3086220804 hasConcept C127413603 @default.
- W3086220804 hasConcept C154945302 @default.
- W3086220804 hasConcept C157286648 @default.
- W3086220804 hasConcept C186370098 @default.
- W3086220804 hasConcept C206729178 @default.
- W3086220804 hasConcept C206833254 @default.
- W3086220804 hasConcept C21547014 @default.
- W3086220804 hasConcept C24590314 @default.
- W3086220804 hasConcept C31258907 @default.
- W3086220804 hasConcept C33923547 @default.
- W3086220804 hasConcept C41008148 @default.
- W3086220804 hasConcept C41971633 @default.
- W3086220804 hasConcept C555944384 @default.
- W3086220804 hasConcept C68387754 @default.
- W3086220804 hasConcept C76155785 @default.
- W3086220804 hasConcept C79403827 @default.
- W3086220804 hasConceptScore W3086220804C101518730 @default.
- W3086220804 hasConceptScore W3086220804C105795698 @default.
- W3086220804 hasConceptScore W3086220804C108037233 @default.
- W3086220804 hasConceptScore W3086220804C111919701 @default.
- W3086220804 hasConceptScore W3086220804C127413603 @default.
- W3086220804 hasConceptScore W3086220804C154945302 @default.
- W3086220804 hasConceptScore W3086220804C157286648 @default.
- W3086220804 hasConceptScore W3086220804C186370098 @default.