Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086294711> ?p ?o ?g. }
- W3086294711 endingPage "2975" @default.
- W3086294711 startingPage "2959" @default.
- W3086294711 abstract "Edge learning (EL), which uses edge computing as a platform to execute machine learning algorithms, is able to fully exploit the massive sensing data generated by Internet of Things (IoT). However, due to the limited transmit power at IoT devices, collecting the sensing data in EL systems is a challenging task. To address this challenge, this article proposes to integrate unmanned ground vehicle (UGV) with EL. With such a scheme, the UGV could improve the communication quality by approaching various IoT devices. However, different devices may transmit different data for different machine learning jobs and a fundamental question is how to jointly plan the UGV path, the devices' energy consumption, and the number of samples for different jobs? This article further proposes a graph-based path planning model, a network energy consumption model, and a sample size planning model that characterizes F-measure as a function of the minority class sample size. With these models, the joint path, energy and sample size planning (JPESP) problem is formulated as a large-scale mixed-integer nonlinear programming (MINLP) problem, which is nontrivial to solve due to the high-dimensional discontinuous variables related to UGV movement. To this end, it is proved that each IoT device should be served only once along the path, thus the problem dimension is significantly reduced. Furthermore, to handle the discontinuous variables, a tabu search (TS)-based algorithm is derived, which converges in expectation to the optimal solution to the JPESP problem. Simulation results under different task scenarios show that our optimization schemes outperform the fixed EL and the full path EL schemes." @default.
- W3086294711 created "2020-09-21" @default.
- W3086294711 creator A5001039256 @default.
- W3086294711 creator A5006012404 @default.
- W3086294711 creator A5006901857 @default.
- W3086294711 creator A5013050746 @default.
- W3086294711 creator A5065457510 @default.
- W3086294711 creator A5085964667 @default.
- W3086294711 date "2021-02-15" @default.
- W3086294711 modified "2023-10-18" @default.
- W3086294711 title "Edge Learning With Unmanned Ground Vehicle: Joint Path, Energy, and Sample Size Planning" @default.
- W3086294711 cites W1968594877 @default.
- W3086294711 cites W1970995225 @default.
- W3086294711 cites W1984187922 @default.
- W3086294711 cites W2038194220 @default.
- W3086294711 cites W2082400728 @default.
- W3086294711 cites W2111619626 @default.
- W3086294711 cites W2150010456 @default.
- W3086294711 cites W2154082176 @default.
- W3086294711 cites W2165616866 @default.
- W3086294711 cites W2184826205 @default.
- W3086294711 cites W2331850012 @default.
- W3086294711 cites W2470052106 @default.
- W3086294711 cites W2484737696 @default.
- W3086294711 cites W2518599539 @default.
- W3086294711 cites W2579974598 @default.
- W3086294711 cites W2624989916 @default.
- W3086294711 cites W2739084857 @default.
- W3086294711 cites W2762575110 @default.
- W3086294711 cites W2770775914 @default.
- W3086294711 cites W2778363563 @default.
- W3086294711 cites W2784050770 @default.
- W3086294711 cites W2789921623 @default.
- W3086294711 cites W2798575764 @default.
- W3086294711 cites W2839844222 @default.
- W3086294711 cites W2885779420 @default.
- W3086294711 cites W2897952952 @default.
- W3086294711 cites W2899183567 @default.
- W3086294711 cites W2900861938 @default.
- W3086294711 cites W2903118147 @default.
- W3086294711 cites W2917973279 @default.
- W3086294711 cites W2933916434 @default.
- W3086294711 cites W2936643080 @default.
- W3086294711 cites W2948266528 @default.
- W3086294711 cites W2951187092 @default.
- W3086294711 cites W2952737563 @default.
- W3086294711 cites W2959716986 @default.
- W3086294711 cites W2963666973 @default.
- W3086294711 cites W2963738831 @default.
- W3086294711 cites W2972799305 @default.
- W3086294711 cites W2980856918 @default.
- W3086294711 cites W2981096252 @default.
- W3086294711 cites W2981138228 @default.
- W3086294711 cites W3000394892 @default.
- W3086294711 cites W3009100893 @default.
- W3086294711 cites W3011448248 @default.
- W3086294711 cites W3012319098 @default.
- W3086294711 cites W3015808323 @default.
- W3086294711 cites W3045828040 @default.
- W3086294711 cites W3046522680 @default.
- W3086294711 cites W3099595001 @default.
- W3086294711 cites W4246598646 @default.
- W3086294711 cites W4250589301 @default.
- W3086294711 doi "https://doi.org/10.1109/jiot.2020.3023000" @default.
- W3086294711 hasPublicationYear "2021" @default.
- W3086294711 type Work @default.
- W3086294711 sameAs 3086294711 @default.
- W3086294711 citedByCount "8" @default.
- W3086294711 countsByYear W30862947112021 @default.
- W3086294711 countsByYear W30862947112022 @default.
- W3086294711 countsByYear W30862947112023 @default.
- W3086294711 crossrefType "journal-article" @default.
- W3086294711 hasAuthorship W3086294711A5001039256 @default.
- W3086294711 hasAuthorship W3086294711A5006012404 @default.
- W3086294711 hasAuthorship W3086294711A5006901857 @default.
- W3086294711 hasAuthorship W3086294711A5013050746 @default.
- W3086294711 hasAuthorship W3086294711A5065457510 @default.
- W3086294711 hasAuthorship W3086294711A5085964667 @default.
- W3086294711 hasBestOaLocation W30862947112 @default.
- W3086294711 hasConcept C11413529 @default.
- W3086294711 hasConcept C119599485 @default.
- W3086294711 hasConcept C126255220 @default.
- W3086294711 hasConcept C127413603 @default.
- W3086294711 hasConcept C154945302 @default.
- W3086294711 hasConcept C2780165032 @default.
- W3086294711 hasConcept C33923547 @default.
- W3086294711 hasConcept C41008148 @default.
- W3086294711 hasConcept C56086750 @default.
- W3086294711 hasConcept C79403827 @default.
- W3086294711 hasConcept C81074085 @default.
- W3086294711 hasConcept C90509273 @default.
- W3086294711 hasConceptScore W3086294711C11413529 @default.
- W3086294711 hasConceptScore W3086294711C119599485 @default.
- W3086294711 hasConceptScore W3086294711C126255220 @default.
- W3086294711 hasConceptScore W3086294711C127413603 @default.
- W3086294711 hasConceptScore W3086294711C154945302 @default.
- W3086294711 hasConceptScore W3086294711C2780165032 @default.
- W3086294711 hasConceptScore W3086294711C33923547 @default.