Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086312610> ?p ?o ?g. }
- W3086312610 endingPage "142291" @default.
- W3086312610 startingPage "142291" @default.
- W3086312610 abstract "The radioactive gas radon (Rn) is considered as an indoor air pollutant due to its detrimental effects on human health. In fact, exposure to Rn belongs to the most important causes for lung cancer after tobacco smoking. The dominant source of indoor Rn is the ground beneath the house. The geogenic Rn potential (GRP) - a function of soil gas Rn concentration and soil gas permeability - quantifies what earth delivers in terms of Rn and represents a hazard indicator for elevated indoor Rn concentration. In this study, we aim at developing an improved spatial continuous GRP map based on 4448 field measurements of GRP distributed across Germany. We fitted three different machine learning algorithms, multivariate adaptive regression splines, random forest and support vector machines utilizing 36 candidate predictors. Predictor selection, hyperparameter tuning and performance assessment were conducted using a spatial cross-validation where the data was iteratively left out by spatial blocks of 40 km*40 km. This procedure counteracts the effect of spatial auto-correlation in predictor and response data and minimizes dependence of training and test data. The spatial cross-validated performance statistics revealed that random forest provided the most accurate predictions. The predictors selected as informative reflect geology, climate (temperature, precipitation and soil moisture), soil hydraulic, soil physical (field capacity, coarse fraction) and soil chemical properties (potassium and nitrogen concentration). Model interpretation techniques such as predictor importance as well as partial and spatial dependence plots confirmed the hypothesized dominant effect of geology on GRP, but also revealed significant contributions of the other predictors. Partial and spatial dependence plots gave further valuable insight into the quantitative predictor-response relationship and its spatial distribution. A comparison with a previous version of the German GRP map using 1359 independent test data indicates a significantly better performance of the random forest based map." @default.
- W3086312610 created "2020-09-21" @default.
- W3086312610 creator A5001921106 @default.
- W3086312610 creator A5003590626 @default.
- W3086312610 creator A5019150791 @default.
- W3086312610 creator A5026667671 @default.
- W3086312610 date "2021-02-01" @default.
- W3086312610 modified "2023-10-02" @default.
- W3086312610 title "Mapping the geogenic radon potential for Germany by machine learning" @default.
- W3086312610 cites W1875061881 @default.
- W3086312610 cites W1969813503 @default.
- W3086312610 cites W1980909646 @default.
- W3086312610 cites W1989631626 @default.
- W3086312610 cites W2000247240 @default.
- W3086312610 cites W2005029697 @default.
- W3086312610 cites W2007873570 @default.
- W3086312610 cites W2012118327 @default.
- W3086312610 cites W2019941997 @default.
- W3086312610 cites W2020487351 @default.
- W3086312610 cites W2026961403 @default.
- W3086312610 cites W2028054366 @default.
- W3086312610 cites W2030746674 @default.
- W3086312610 cites W2035549409 @default.
- W3086312610 cites W2040671816 @default.
- W3086312610 cites W2050372013 @default.
- W3086312610 cites W2051677780 @default.
- W3086312610 cites W2071887925 @default.
- W3086312610 cites W2082354460 @default.
- W3086312610 cites W2100553071 @default.
- W3086312610 cites W2123998733 @default.
- W3086312610 cites W2132086536 @default.
- W3086312610 cites W2157963336 @default.
- W3086312610 cites W2171642129 @default.
- W3086312610 cites W2218047931 @default.
- W3086312610 cites W2219542444 @default.
- W3086312610 cites W2237118555 @default.
- W3086312610 cites W2250085081 @default.
- W3086312610 cites W2343002501 @default.
- W3086312610 cites W2502106868 @default.
- W3086312610 cites W2519033753 @default.
- W3086312610 cites W2560136348 @default.
- W3086312610 cites W2588003345 @default.
- W3086312610 cites W2606201786 @default.
- W3086312610 cites W2606716674 @default.
- W3086312610 cites W2613126452 @default.
- W3086312610 cites W2697293051 @default.
- W3086312610 cites W2729033468 @default.
- W3086312610 cites W2773188111 @default.
- W3086312610 cites W2786693279 @default.
- W3086312610 cites W2792315929 @default.
- W3086312610 cites W2792910683 @default.
- W3086312610 cites W2793997912 @default.
- W3086312610 cites W2794916302 @default.
- W3086312610 cites W2807041642 @default.
- W3086312610 cites W2896139965 @default.
- W3086312610 cites W2906723254 @default.
- W3086312610 cites W2911964244 @default.
- W3086312610 cites W2936170497 @default.
- W3086312610 cites W2952516441 @default.
- W3086312610 cites W2970807030 @default.
- W3086312610 cites W2972629016 @default.
- W3086312610 cites W2978577426 @default.
- W3086312610 cites W3015083507 @default.
- W3086312610 cites W3034961508 @default.
- W3086312610 cites W380057522 @default.
- W3086312610 cites W4246259708 @default.
- W3086312610 doi "https://doi.org/10.1016/j.scitotenv.2020.142291" @default.
- W3086312610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33254926" @default.
- W3086312610 hasPublicationYear "2021" @default.
- W3086312610 type Work @default.
- W3086312610 sameAs 3086312610 @default.
- W3086312610 citedByCount "28" @default.
- W3086312610 countsByYear W30863126102021 @default.
- W3086312610 countsByYear W30863126102022 @default.
- W3086312610 countsByYear W30863126102023 @default.
- W3086312610 crossrefType "journal-article" @default.
- W3086312610 hasAuthorship W3086312610A5001921106 @default.
- W3086312610 hasAuthorship W3086312610A5003590626 @default.
- W3086312610 hasAuthorship W3086312610A5019150791 @default.
- W3086312610 hasAuthorship W3086312610A5026667671 @default.
- W3086312610 hasBestOaLocation W30863126101 @default.
- W3086312610 hasConcept C119857082 @default.
- W3086312610 hasConcept C121332964 @default.
- W3086312610 hasConcept C12267149 @default.
- W3086312610 hasConcept C159390177 @default.
- W3086312610 hasConcept C159750122 @default.
- W3086312610 hasConcept C169258074 @default.
- W3086312610 hasConcept C2777027713 @default.
- W3086312610 hasConcept C39432304 @default.
- W3086312610 hasConcept C41008148 @default.
- W3086312610 hasConcept C545943180 @default.
- W3086312610 hasConcept C62520636 @default.
- W3086312610 hasConceptScore W3086312610C119857082 @default.
- W3086312610 hasConceptScore W3086312610C121332964 @default.
- W3086312610 hasConceptScore W3086312610C12267149 @default.
- W3086312610 hasConceptScore W3086312610C159390177 @default.
- W3086312610 hasConceptScore W3086312610C159750122 @default.
- W3086312610 hasConceptScore W3086312610C169258074 @default.