Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086670884> ?p ?o ?g. }
- W3086670884 endingPage "1020" @default.
- W3086670884 startingPage "1020" @default.
- W3086670884 abstract "Sentiment polarity classification in social media is a very important task, as it enables gathering trends on particular subjects given a set of opinions. Currently, a great advance has been made by using deep learning techniques, such as word embeddings, recurrent neural networks, and encoders, such as BERT. Unfortunately, these techniques require large amounts of data, which, in some cases, is not available. In order to model this situation, challenges, such as the Spanish TASS organized by the Spanish Society for Natural Language Processing (SEPLN), have been proposed, which pose particular difficulties: First, an unwieldy balance in the training and the test set, being this latter more than eight times the size of the training set. Another difficulty is the marked unbalance in the distribution of classes, which is also different between both sets. Finally, there are four different labels, which create the need to adapt current classifications methods for multiclass handling. Traditional machine learning methods, such as Naïve Bayes, Logistic Regression, and Support Vector Machines, achieve modest performance in these conditions, but used as an ensemble it is possible to attain competitive execution. Several strategies to build classifier ensembles have been proposed; this paper proposes estimating an optimal weighting scheme using a Differential Evolution algorithm focused on dealing with particular issues that multiclass classification and unbalanced corpora pose. The ensemble with the proposed optimized weighting scheme is able to improve the classification results on the full test set of the TASS challenge (General corpus), achieving state of the art performance when compared with other works on this task, which make no use of NLP techniques." @default.
- W3086670884 created "2020-09-21" @default.
- W3086670884 creator A5011592617 @default.
- W3086670884 creator A5055414768 @default.
- W3086670884 creator A5063105402 @default.
- W3086670884 creator A5077102011 @default.
- W3086670884 date "2020-09-12" @default.
- W3086670884 modified "2023-09-27" @default.
- W3086670884 title "Evolutionary Optimization of Ensemble Learning to Determine Sentiment Polarity in an Unbalanced Multiclass Corpus" @default.
- W3086670884 cites W1595159159 @default.
- W3086670884 cites W1966080652 @default.
- W3086670884 cites W1970957223 @default.
- W3086670884 cites W1991547055 @default.
- W3086670884 cites W2006020859 @default.
- W3086670884 cites W2019303063 @default.
- W3086670884 cites W2036762380 @default.
- W3086670884 cites W2077997370 @default.
- W3086670884 cites W2084046180 @default.
- W3086670884 cites W2091210302 @default.
- W3086670884 cites W2114257686 @default.
- W3086670884 cites W2114269346 @default.
- W3086670884 cites W2135293965 @default.
- W3086670884 cites W2144211451 @default.
- W3086670884 cites W2146194630 @default.
- W3086670884 cites W2158997610 @default.
- W3086670884 cites W2167243426 @default.
- W3086670884 cites W2168745915 @default.
- W3086670884 cites W2311509729 @default.
- W3086670884 cites W2417999172 @default.
- W3086670884 cites W2593914038 @default.
- W3086670884 cites W2742971208 @default.
- W3086670884 cites W2767635412 @default.
- W3086670884 cites W2770592549 @default.
- W3086670884 cites W2806345781 @default.
- W3086670884 cites W2807776514 @default.
- W3086670884 cites W2906441821 @default.
- W3086670884 cites W2919350184 @default.
- W3086670884 cites W2982026416 @default.
- W3086670884 cites W3004993122 @default.
- W3086670884 cites W3038010422 @default.
- W3086670884 cites W3044806259 @default.
- W3086670884 doi "https://doi.org/10.3390/e22091020" @default.
- W3086670884 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7597113" @default.
- W3086670884 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33286789" @default.
- W3086670884 hasPublicationYear "2020" @default.
- W3086670884 type Work @default.
- W3086670884 sameAs 3086670884 @default.
- W3086670884 citedByCount "6" @default.
- W3086670884 countsByYear W30866708842021 @default.
- W3086670884 countsByYear W30866708842022 @default.
- W3086670884 countsByYear W30866708842023 @default.
- W3086670884 crossrefType "journal-article" @default.
- W3086670884 hasAuthorship W3086670884A5011592617 @default.
- W3086670884 hasAuthorship W3086670884A5055414768 @default.
- W3086670884 hasAuthorship W3086670884A5063105402 @default.
- W3086670884 hasAuthorship W3086670884A5077102011 @default.
- W3086670884 hasBestOaLocation W30866708841 @default.
- W3086670884 hasConcept C119857082 @default.
- W3086670884 hasConcept C12267149 @default.
- W3086670884 hasConcept C123860398 @default.
- W3086670884 hasConcept C126838900 @default.
- W3086670884 hasConcept C154945302 @default.
- W3086670884 hasConcept C169903167 @default.
- W3086670884 hasConcept C177264268 @default.
- W3086670884 hasConcept C183115368 @default.
- W3086670884 hasConcept C199360897 @default.
- W3086670884 hasConcept C41008148 @default.
- W3086670884 hasConcept C45942800 @default.
- W3086670884 hasConcept C71924100 @default.
- W3086670884 hasConcept C95623464 @default.
- W3086670884 hasConceptScore W3086670884C119857082 @default.
- W3086670884 hasConceptScore W3086670884C12267149 @default.
- W3086670884 hasConceptScore W3086670884C123860398 @default.
- W3086670884 hasConceptScore W3086670884C126838900 @default.
- W3086670884 hasConceptScore W3086670884C154945302 @default.
- W3086670884 hasConceptScore W3086670884C169903167 @default.
- W3086670884 hasConceptScore W3086670884C177264268 @default.
- W3086670884 hasConceptScore W3086670884C183115368 @default.
- W3086670884 hasConceptScore W3086670884C199360897 @default.
- W3086670884 hasConceptScore W3086670884C41008148 @default.
- W3086670884 hasConceptScore W3086670884C45942800 @default.
- W3086670884 hasConceptScore W3086670884C71924100 @default.
- W3086670884 hasConceptScore W3086670884C95623464 @default.
- W3086670884 hasIssue "9" @default.
- W3086670884 hasLocation W30866708841 @default.
- W3086670884 hasLocation W30866708842 @default.
- W3086670884 hasLocation W30866708843 @default.
- W3086670884 hasLocation W30866708844 @default.
- W3086670884 hasOpenAccess W3086670884 @default.
- W3086670884 hasPrimaryLocation W30866708841 @default.
- W3086670884 hasRelatedWork W1828821159 @default.
- W3086670884 hasRelatedWork W2003868635 @default.
- W3086670884 hasRelatedWork W2079067915 @default.
- W3086670884 hasRelatedWork W2520775273 @default.
- W3086670884 hasRelatedWork W3120057638 @default.
- W3086670884 hasRelatedWork W3158264953 @default.
- W3086670884 hasRelatedWork W3194539120 @default.
- W3086670884 hasRelatedWork W3202701980 @default.