Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086714883> ?p ?o ?g. }
- W3086714883 abstract "Entity linkage (EL) is a critical problem in data cleaning and integration. In the past several decades, EL has typically been done by rule-based systems or traditional machine learning models with hand-curated features, both of which heavily depend on manual human inputs. With the ever-increasing growth of new data, deep learning (DL) based approaches have been proposed to alleviate the high cost of EL associated with the traditional models. Existing exploration of DL models for EL strictly follows the well-known twin-network architecture. However, we argue that the twin-network architecture is sub-optimal to EL, leading to inherent drawbacks of existing models. In order to address the drawbacks, we propose a novel and generic contrastive DL framework for EL. The proposed framework is able to capture both syntactic and semantic matching signals and pays attention to subtle but critical differences. Based on the framework, we develop a contrastive DL approach for EL, called CorDEL, with three powerful variants. We evaluate CorDEL with extensive experiments conducted on both public benchmark datasets and a real-world dataset. CorDEL outperforms previous state-of-the-art models by 5.2% on public benchmark datasets. Moreover, CorDEL yields a 2.4% improvement over the current best DL model on the real-world dataset, while reducing the number of training parameters by 97.6%." @default.
- W3086714883 created "2020-09-21" @default.
- W3086714883 creator A5001402526 @default.
- W3086714883 creator A5026662128 @default.
- W3086714883 creator A5028075867 @default.
- W3086714883 creator A5036511132 @default.
- W3086714883 creator A5052278550 @default.
- W3086714883 date "2020-09-15" @default.
- W3086714883 modified "2023-09-24" @default.
- W3086714883 title "CorDEL: A Contrastive Deep Learning Approach for Entity Linkage" @default.
- W3086714883 cites W109363366 @default.
- W3086714883 cites W1547612978 @default.
- W3086714883 cites W1663973292 @default.
- W3086714883 cites W1964786778 @default.
- W3086714883 cites W1966716734 @default.
- W3086714883 cites W1995099886 @default.
- W3086714883 cites W2041439319 @default.
- W3086714883 cites W2056748234 @default.
- W3086714883 cites W2067566391 @default.
- W3086714883 cites W2073471108 @default.
- W3086714883 cites W2106675345 @default.
- W3086714883 cites W2107966677 @default.
- W3086714883 cites W2108991785 @default.
- W3086714883 cites W2112796928 @default.
- W3086714883 cites W2114764731 @default.
- W3086714883 cites W2128892113 @default.
- W3086714883 cites W2136189984 @default.
- W3086714883 cites W2153579005 @default.
- W3086714883 cites W2154785834 @default.
- W3086714883 cites W2164456230 @default.
- W3086714883 cites W2170738476 @default.
- W3086714883 cites W2171472464 @default.
- W3086714883 cites W2186845332 @default.
- W3086714883 cites W2250539671 @default.
- W3086714883 cites W2251008987 @default.
- W3086714883 cites W2286300105 @default.
- W3086714883 cites W2288244345 @default.
- W3086714883 cites W2397871834 @default.
- W3086714883 cites W2470673105 @default.
- W3086714883 cites W2493916176 @default.
- W3086714883 cites W2525739395 @default.
- W3086714883 cites W2536015822 @default.
- W3086714883 cites W2542998387 @default.
- W3086714883 cites W2612177096 @default.
- W3086714883 cites W2767248316 @default.
- W3086714883 cites W2775696413 @default.
- W3086714883 cites W2798649495 @default.
- W3086714883 cites W2798980199 @default.
- W3086714883 cites W2919115771 @default.
- W3086714883 cites W2945848398 @default.
- W3086714883 cites W2946504770 @default.
- W3086714883 cites W2952557513 @default.
- W3086714883 cites W2957204582 @default.
- W3086714883 cites W2962711740 @default.
- W3086714883 cites W2963091558 @default.
- W3086714883 cites W2963341956 @default.
- W3086714883 cites W2963403868 @default.
- W3086714883 cites W2963626623 @default.
- W3086714883 cites W2964121744 @default.
- W3086714883 cites W2985009327 @default.
- W3086714883 cites W2998623274 @default.
- W3086714883 cites W3001467249 @default.
- W3086714883 cites W3012715399 @default.
- W3086714883 cites W3029539154 @default.
- W3086714883 doi "https://doi.org/10.48550/arxiv.2009.07203" @default.
- W3086714883 hasPublicationYear "2020" @default.
- W3086714883 type Work @default.
- W3086714883 sameAs 3086714883 @default.
- W3086714883 citedByCount "3" @default.
- W3086714883 countsByYear W30867148832020 @default.
- W3086714883 countsByYear W30867148832021 @default.
- W3086714883 crossrefType "posted-content" @default.
- W3086714883 hasAuthorship W3086714883A5001402526 @default.
- W3086714883 hasAuthorship W3086714883A5026662128 @default.
- W3086714883 hasAuthorship W3086714883A5028075867 @default.
- W3086714883 hasAuthorship W3086714883A5036511132 @default.
- W3086714883 hasAuthorship W3086714883A5052278550 @default.
- W3086714883 hasBestOaLocation W30867148831 @default.
- W3086714883 hasConcept C104317684 @default.
- W3086714883 hasConcept C105795698 @default.
- W3086714883 hasConcept C108583219 @default.
- W3086714883 hasConcept C119857082 @default.
- W3086714883 hasConcept C13280743 @default.
- W3086714883 hasConcept C154945302 @default.
- W3086714883 hasConcept C165064840 @default.
- W3086714883 hasConcept C185592680 @default.
- W3086714883 hasConcept C185798385 @default.
- W3086714883 hasConcept C204321447 @default.
- W3086714883 hasConcept C205649164 @default.
- W3086714883 hasConcept C2129575 @default.
- W3086714883 hasConcept C31266012 @default.
- W3086714883 hasConcept C33923547 @default.
- W3086714883 hasConcept C41008148 @default.
- W3086714883 hasConcept C55493867 @default.
- W3086714883 hasConcept C69075417 @default.
- W3086714883 hasConceptScore W3086714883C104317684 @default.
- W3086714883 hasConceptScore W3086714883C105795698 @default.
- W3086714883 hasConceptScore W3086714883C108583219 @default.
- W3086714883 hasConceptScore W3086714883C119857082 @default.
- W3086714883 hasConceptScore W3086714883C13280743 @default.