Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086906557> ?p ?o ?g. }
- W3086906557 endingPage "112" @default.
- W3086906557 startingPage "101" @default.
- W3086906557 abstract "Although deep learning models have great promise for clinical applications, there are numerous obstacles to training effective deep learning models. There is a need for collecting large quantities of diverse data, which often can only be achieved through multiinstitutional collaborations. One approach to multiinstitutional studies is to build large central repositories, but this is hindered by concerns about data sharing, including patient privacy, data deidentification, regulation, intellectual property, and data storage. These challenges have made centrally hosting data less impractical. An alternative approach is to have the data hosted locally and have the model trained in a collaborative fashion. Depending on the collaborative learning approach, model weights, model gradients, or smashed data are shared instead of raw patient data. These approaches can also reduce the communication overhead while reducing the need to share private patient data. In this chapter, we will review and compare the current techniques for distributing learning, handling data heterogeneity, and preserving patient privacy for multiinstitutional applications." @default.
- W3086906557 created "2020-09-21" @default.
- W3086906557 creator A5004965117 @default.
- W3086906557 creator A5022815450 @default.
- W3086906557 creator A5023495279 @default.
- W3086906557 creator A5039535916 @default.
- W3086906557 creator A5039622318 @default.
- W3086906557 creator A5065482711 @default.
- W3086906557 creator A5040173883 @default.
- W3086906557 date "2021-01-01" @default.
- W3086906557 modified "2023-10-18" @default.
- W3086906557 title "Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data" @default.
- W3086906557 cites W1641498739 @default.
- W3086906557 cites W2076014259 @default.
- W3086906557 cites W2117539524 @default.
- W3086906557 cites W2148143831 @default.
- W3086906557 cites W2194775991 @default.
- W3086906557 cites W2337093093 @default.
- W3086906557 cites W2473418344 @default.
- W3086906557 cites W2560647685 @default.
- W3086906557 cites W2562469482 @default.
- W3086906557 cites W2581082771 @default.
- W3086906557 cites W2757528734 @default.
- W3086906557 cites W2791091755 @default.
- W3086906557 cites W2791655542 @default.
- W3086906557 cites W2795354529 @default.
- W3086906557 cites W2803620993 @default.
- W3086906557 cites W2811374795 @default.
- W3086906557 cites W2890354008 @default.
- W3086906557 cites W2901954625 @default.
- W3086906557 cites W2905307056 @default.
- W3086906557 cites W2905441841 @default.
- W3086906557 cites W2908201961 @default.
- W3086906557 cites W2914340893 @default.
- W3086906557 cites W2919115771 @default.
- W3086906557 cites W2949619619 @default.
- W3086906557 cites W2951141079 @default.
- W3086906557 cites W2961396908 @default.
- W3086906557 cites W2963209930 @default.
- W3086906557 cites W2963300950 @default.
- W3086906557 cites W2963693643 @default.
- W3086906557 cites W2964350391 @default.
- W3086906557 cites W2967821093 @default.
- W3086906557 cites W2974726644 @default.
- W3086906557 cites W2979637109 @default.
- W3086906557 cites W2982036758 @default.
- W3086906557 cites W2984306354 @default.
- W3086906557 cites W3011726479 @default.
- W3086906557 cites W3037505008 @default.
- W3086906557 cites W3098281398 @default.
- W3086906557 cites W4250482878 @default.
- W3086906557 doi "https://doi.org/10.1016/b978-0-12-821259-2.00006-5" @default.
- W3086906557 hasPublicationYear "2021" @default.
- W3086906557 type Work @default.
- W3086906557 sameAs 3086906557 @default.
- W3086906557 citedByCount "0" @default.
- W3086906557 crossrefType "book-chapter" @default.
- W3086906557 hasAuthorship W3086906557A5004965117 @default.
- W3086906557 hasAuthorship W3086906557A5022815450 @default.
- W3086906557 hasAuthorship W3086906557A5023495279 @default.
- W3086906557 hasAuthorship W3086906557A5039535916 @default.
- W3086906557 hasAuthorship W3086906557A5039622318 @default.
- W3086906557 hasAuthorship W3086906557A5040173883 @default.
- W3086906557 hasAuthorship W3086906557A5065482711 @default.
- W3086906557 hasConcept C108583219 @default.
- W3086906557 hasConcept C111472728 @default.
- W3086906557 hasConcept C111919701 @default.
- W3086906557 hasConcept C123201435 @default.
- W3086906557 hasConcept C132964779 @default.
- W3086906557 hasConcept C138020889 @default.
- W3086906557 hasConcept C138885662 @default.
- W3086906557 hasConcept C142724271 @default.
- W3086906557 hasConcept C154945302 @default.
- W3086906557 hasConcept C189950617 @default.
- W3086906557 hasConcept C199360897 @default.
- W3086906557 hasConcept C204787440 @default.
- W3086906557 hasConcept C2522767166 @default.
- W3086906557 hasConcept C2779960059 @default.
- W3086906557 hasConcept C2779965156 @default.
- W3086906557 hasConcept C38652104 @default.
- W3086906557 hasConcept C41008148 @default.
- W3086906557 hasConcept C56739046 @default.
- W3086906557 hasConcept C71924100 @default.
- W3086906557 hasConceptScore W3086906557C108583219 @default.
- W3086906557 hasConceptScore W3086906557C111472728 @default.
- W3086906557 hasConceptScore W3086906557C111919701 @default.
- W3086906557 hasConceptScore W3086906557C123201435 @default.
- W3086906557 hasConceptScore W3086906557C132964779 @default.
- W3086906557 hasConceptScore W3086906557C138020889 @default.
- W3086906557 hasConceptScore W3086906557C138885662 @default.
- W3086906557 hasConceptScore W3086906557C142724271 @default.
- W3086906557 hasConceptScore W3086906557C154945302 @default.
- W3086906557 hasConceptScore W3086906557C189950617 @default.
- W3086906557 hasConceptScore W3086906557C199360897 @default.
- W3086906557 hasConceptScore W3086906557C204787440 @default.
- W3086906557 hasConceptScore W3086906557C2522767166 @default.
- W3086906557 hasConceptScore W3086906557C2779960059 @default.
- W3086906557 hasConceptScore W3086906557C2779965156 @default.