Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086931396> ?p ?o ?g. }
- W3086931396 endingPage "13340" @default.
- W3086931396 startingPage "13328" @default.
- W3086931396 abstract "The ever-increasing and unbalanced traffic load in cellular vehicle-to-everything (C-V2X) networks have increased the network congestion and led to user dissatisfaction. To relieve the network congestion and improve the traffic load balance, in this paper, we propose an intelligent software defined C-V2X network framework to enable flexible and low-complexity traffic offloading by decoupling the network data plane from the control plane. In the data plane, the cellular traffic offloading and the vehicle assisted traffic offloading are jointly performed. In the control plane, deep learning is deployed to reduce the software defined network (SDN) control complexity and improve the traffic offloading efficiency. Under the proposed framework, we investigate the traffic offloading problem, which can be formulated as a multi-objective optimization problem. Specifically, the first objective maximizes the cellular access point (AP) throughput with consideration of the load balance by associating the users with the APs. The second objective maximizes the vehicle throughput with consideration of the vehicle trajectory by associating the delay-insensitive users with the vehicles. The two objectives are coupled by the association between the cellular APs and the vehicles. A deep learning based online-offline approach is proposed to solve the multi-objective optimization problem. The online stage decouples the optimization problem into two sub-problems and utilizes the `Pareto optimal' to find the solutions. The offline stage utilizes deep learning to learn from the historical optimization information of the online stage and helps predict the optimal solutions with reduced complexity. Numerical results are provided to validate the advantages of our proposed traffic offloading approach via deep learning in C-V2X networks." @default.
- W3086931396 created "2020-09-21" @default.
- W3086931396 creator A5016763577 @default.
- W3086931396 creator A5050309072 @default.
- W3086931396 creator A5065703353 @default.
- W3086931396 creator A5072620327 @default.
- W3086931396 creator A5082844557 @default.
- W3086931396 creator A5091661110 @default.
- W3086931396 date "2020-11-01" @default.
- W3086931396 modified "2023-10-17" @default.
- W3086931396 title "Deep Learning Empowered Traffic Offloading in Intelligent Software Defined Cellular V2X Networks" @default.
- W3086931396 cites W2051812123 @default.
- W3086931396 cites W2099388379 @default.
- W3086931396 cites W2117808195 @default.
- W3086931396 cites W2331752510 @default.
- W3086931396 cites W2617931713 @default.
- W3086931396 cites W2620303643 @default.
- W3086931396 cites W2735818110 @default.
- W3086931396 cites W2803418695 @default.
- W3086931396 cites W2803896320 @default.
- W3086931396 cites W2804017726 @default.
- W3086931396 cites W2804117600 @default.
- W3086931396 cites W2804985843 @default.
- W3086931396 cites W2808653791 @default.
- W3086931396 cites W2889722097 @default.
- W3086931396 cites W2890339841 @default.
- W3086931396 cites W2893069199 @default.
- W3086931396 cites W2894383926 @default.
- W3086931396 cites W2896078736 @default.
- W3086931396 cites W2896316144 @default.
- W3086931396 cites W2901694823 @default.
- W3086931396 cites W2911471242 @default.
- W3086931396 cites W2915621660 @default.
- W3086931396 cites W2918891759 @default.
- W3086931396 cites W2919115771 @default.
- W3086931396 cites W2924948991 @default.
- W3086931396 cites W2927135077 @default.
- W3086931396 cites W2947829929 @default.
- W3086931396 cites W2951469844 @default.
- W3086931396 cites W2952701279 @default.
- W3086931396 cites W2953679752 @default.
- W3086931396 cites W2958991960 @default.
- W3086931396 cites W2962796261 @default.
- W3086931396 cites W2975468637 @default.
- W3086931396 cites W2983694339 @default.
- W3086931396 cites W2996766934 @default.
- W3086931396 cites W4214495460 @default.
- W3086931396 doi "https://doi.org/10.1109/tvt.2020.3023194" @default.
- W3086931396 hasPublicationYear "2020" @default.
- W3086931396 type Work @default.
- W3086931396 sameAs 3086931396 @default.
- W3086931396 citedByCount "14" @default.
- W3086931396 countsByYear W30869313962021 @default.
- W3086931396 countsByYear W30869313962022 @default.
- W3086931396 countsByYear W30869313962023 @default.
- W3086931396 crossrefType "journal-article" @default.
- W3086931396 hasAuthorship W3086931396A5016763577 @default.
- W3086931396 hasAuthorship W3086931396A5050309072 @default.
- W3086931396 hasAuthorship W3086931396A5065703353 @default.
- W3086931396 hasAuthorship W3086931396A5072620327 @default.
- W3086931396 hasAuthorship W3086931396A5082844557 @default.
- W3086931396 hasAuthorship W3086931396A5091661110 @default.
- W3086931396 hasConcept C11413529 @default.
- W3086931396 hasConcept C120314980 @default.
- W3086931396 hasConcept C127413603 @default.
- W3086931396 hasConcept C133972139 @default.
- W3086931396 hasConcept C137836250 @default.
- W3086931396 hasConcept C153646914 @default.
- W3086931396 hasConcept C157764524 @default.
- W3086931396 hasConcept C158379750 @default.
- W3086931396 hasConcept C199360897 @default.
- W3086931396 hasConcept C201100257 @default.
- W3086931396 hasConcept C22212356 @default.
- W3086931396 hasConcept C2777904410 @default.
- W3086931396 hasConcept C2779888511 @default.
- W3086931396 hasConcept C31258907 @default.
- W3086931396 hasConcept C41008148 @default.
- W3086931396 hasConcept C555944384 @default.
- W3086931396 hasConcept C76155785 @default.
- W3086931396 hasConcept C77270119 @default.
- W3086931396 hasConceptScore W3086931396C11413529 @default.
- W3086931396 hasConceptScore W3086931396C120314980 @default.
- W3086931396 hasConceptScore W3086931396C127413603 @default.
- W3086931396 hasConceptScore W3086931396C133972139 @default.
- W3086931396 hasConceptScore W3086931396C137836250 @default.
- W3086931396 hasConceptScore W3086931396C153646914 @default.
- W3086931396 hasConceptScore W3086931396C157764524 @default.
- W3086931396 hasConceptScore W3086931396C158379750 @default.
- W3086931396 hasConceptScore W3086931396C199360897 @default.
- W3086931396 hasConceptScore W3086931396C201100257 @default.
- W3086931396 hasConceptScore W3086931396C22212356 @default.
- W3086931396 hasConceptScore W3086931396C2777904410 @default.
- W3086931396 hasConceptScore W3086931396C2779888511 @default.
- W3086931396 hasConceptScore W3086931396C31258907 @default.
- W3086931396 hasConceptScore W3086931396C41008148 @default.
- W3086931396 hasConceptScore W3086931396C555944384 @default.
- W3086931396 hasConceptScore W3086931396C76155785 @default.
- W3086931396 hasConceptScore W3086931396C77270119 @default.