Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086943907> ?p ?o ?g. }
- W3086943907 endingPage "1044" @default.
- W3086943907 startingPage "1013" @default.
- W3086943907 abstract "Abstract. Efficient and robust landslide mapping and volume estimation is essential to rapidly infer landslide spatial distribution, to quantify the role of triggering events on landscape changes, and to assess direct and secondary landslide-related geomorphic hazards. Many efforts have been made to develop landslide mapping methods, based on 2D satellite or aerial images, and to constrain the empirical volume–area (V–A) relationship which, in turn, would allow for the provision of indirect estimates of landslide volume. Despite these efforts, major issues remain, including the uncertainty in the V–A scaling, landslide amalgamation and the underdetection of landslides. To address these issues, we propose a new semiautomatic 3D point cloud differencing method to detect geomorphic changes, filter out false landslide detections due to lidar elevation errors, obtain robust landslide inventories with an uncertainty metric, and directly measure the volume and geometric properties of landslides. This method is based on the multiscale model-to-model cloud comparison (M3C2) algorithm and was applied to a multitemporal airborne lidar dataset of the Kaikōura region, New Zealand, following the Mw 7.8 earthquake of 14 November 2016. In a 5 km2 area, the 3D point cloud differencing method detects 1118 potential sources. Manual labeling of 739 potential sources shows the prevalence of false detections in forest-free areas (24.4 %), due to spatially correlated elevation errors, and in forested areas (80 %), related to ground classification errors in the pre-earthquake (pre-EQ) dataset. Combining the distance to the closest deposit and signal-to-noise ratio metrics, the filtering step of our workflow reduces the prevalence of false source detections to below 1 % in terms of total area and volume of the labeled inventory. The final predicted inventory contains 433 landslide sources and 399 deposits with a lower limit of detection size of 20 m2 and a total volume of 724 297 ± 141 087 m3 for sources and 954 029 ± 159 188 m3 for deposits. Geometric properties of the 3D source inventory, including the V–A relationship, are consistent with previous results, except for the lack of the classically observed rollover of the distribution of source area. A manually mapped 2D inventory from aerial image comparison has a better lower limit of detection (6 m2) but only identifies 258 landslide scars, exhibits a rollover in the distribution of source area of around 20 m2, and underestimates the total area and volume of 3D-detected sources by 72 % and 58 %, respectively. Detection and delimitation errors in the 2D inventory occur in areas with limited texture change (bare-rock surfaces, forests) and at the transition between sources and deposits that the 3D method accurately captures. Large rotational/translational landslides and retrogressive scars can be detected using the 3D method irrespective of area's vegetation cover, but they are missed in the 2D inventory owing to the dominant vertical topographic change. The 3D inventory misses shallow (< 0.4 m depth) landslides detected using the 2D method, corresponding to 10 % of the total area and 2 % of the total volume of the 3D inventory. Our data show a systematic size-dependent underdetection in the 2D inventory below 200 m2 that may explain all or part of the rollover observed in the 2D landslide source area distribution. While the 3D segmentation of complex clustered landslide sources remains challenging, we demonstrate that 3D point cloud differencing offers a greater detection sensitivity to small changes than a classical difference of digital elevation models (DEMs). Our results underline the vast potential of 3D-derived inventories to exhaustively and objectively quantify the impact of extreme events on topographic change in regions prone to landsliding, to detect a variety of hillslope mass movements that cannot be captured by 2D landslide mapping, and to explore the scaling properties of landslides in new ways." @default.
- W3086943907 created "2020-09-21" @default.
- W3086943907 creator A5061244358 @default.
- W3086943907 creator A5075855821 @default.
- W3086943907 creator A5086914091 @default.
- W3086943907 date "2021-08-26" @default.
- W3086943907 modified "2023-10-17" @default.
- W3086943907 title "Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data" @default.
- W3086943907 cites W1582179228 @default.
- W3086943907 cites W1968353677 @default.
- W3086943907 cites W1968677651 @default.
- W3086943907 cites W1972384525 @default.
- W3086943907 cites W1974173367 @default.
- W3086943907 cites W1975809100 @default.
- W3086943907 cites W1986200023 @default.
- W3086943907 cites W1993118912 @default.
- W3086943907 cites W2004841941 @default.
- W3086943907 cites W2009214675 @default.
- W3086943907 cites W2020617337 @default.
- W3086943907 cites W2022684724 @default.
- W3086943907 cites W2024181336 @default.
- W3086943907 cites W2040398869 @default.
- W3086943907 cites W2046225459 @default.
- W3086943907 cites W2049981393 @default.
- W3086943907 cites W2051367231 @default.
- W3086943907 cites W2056769281 @default.
- W3086943907 cites W2058082754 @default.
- W3086943907 cites W2061438228 @default.
- W3086943907 cites W2068343386 @default.
- W3086943907 cites W2072379588 @default.
- W3086943907 cites W2077907027 @default.
- W3086943907 cites W2085355871 @default.
- W3086943907 cites W2089314377 @default.
- W3086943907 cites W2092093080 @default.
- W3086943907 cites W2094896089 @default.
- W3086943907 cites W2096717450 @default.
- W3086943907 cites W2098681477 @default.
- W3086943907 cites W2101807845 @default.
- W3086943907 cites W2113162852 @default.
- W3086943907 cites W2134702142 @default.
- W3086943907 cites W2140926590 @default.
- W3086943907 cites W2142347478 @default.
- W3086943907 cites W2145677506 @default.
- W3086943907 cites W2147357873 @default.
- W3086943907 cites W2152275262 @default.
- W3086943907 cites W2159256373 @default.
- W3086943907 cites W2160642098 @default.
- W3086943907 cites W2167507651 @default.
- W3086943907 cites W2169816087 @default.
- W3086943907 cites W2170756868 @default.
- W3086943907 cites W2288228418 @default.
- W3086943907 cites W2317992515 @default.
- W3086943907 cites W2517757032 @default.
- W3086943907 cites W2586746029 @default.
- W3086943907 cites W2601243251 @default.
- W3086943907 cites W2611568923 @default.
- W3086943907 cites W2771048314 @default.
- W3086943907 cites W2788820446 @default.
- W3086943907 cites W2788851066 @default.
- W3086943907 cites W2794741889 @default.
- W3086943907 cites W2891781873 @default.
- W3086943907 cites W2899725189 @default.
- W3086943907 cites W2901553491 @default.
- W3086943907 cites W2916772745 @default.
- W3086943907 cites W2939169104 @default.
- W3086943907 cites W2961263939 @default.
- W3086943907 cites W2963809831 @default.
- W3086943907 cites W2969723782 @default.
- W3086943907 cites W2980867860 @default.
- W3086943907 cites W2995851091 @default.
- W3086943907 cites W3014732796 @default.
- W3086943907 cites W3017342248 @default.
- W3086943907 cites W3034748078 @default.
- W3086943907 cites W3089082547 @default.
- W3086943907 cites W3128121572 @default.
- W3086943907 cites W3131869571 @default.
- W3086943907 cites W4234521029 @default.
- W3086943907 cites W4244092248 @default.
- W3086943907 doi "https://doi.org/10.5194/esurf-9-1013-2021" @default.
- W3086943907 hasPublicationYear "2021" @default.
- W3086943907 type Work @default.
- W3086943907 sameAs 3086943907 @default.
- W3086943907 citedByCount "14" @default.
- W3086943907 countsByYear W30869439072022 @default.
- W3086943907 countsByYear W30869439072023 @default.
- W3086943907 crossrefType "journal-article" @default.
- W3086943907 hasAuthorship W3086943907A5061244358 @default.
- W3086943907 hasAuthorship W3086943907A5075855821 @default.
- W3086943907 hasAuthorship W3086943907A5086914091 @default.
- W3086943907 hasBestOaLocation W30869439071 @default.
- W3086943907 hasConcept C121332964 @default.
- W3086943907 hasConcept C127313418 @default.
- W3086943907 hasConcept C131979681 @default.
- W3086943907 hasConcept C165205528 @default.
- W3086943907 hasConcept C186295008 @default.
- W3086943907 hasConcept C20556612 @default.
- W3086943907 hasConcept C2524010 @default.
- W3086943907 hasConcept C31972630 @default.