Matches in SemOpenAlex for { <https://semopenalex.org/work/W3086953995> ?p ?o ?g. }
- W3086953995 endingPage "165848" @default.
- W3086953995 startingPage "165837" @default.
- W3086953995 abstract "This paper proposes an adaptive energy management strategy for hybrid electric vehicles by combining deep reinforcement learning (DRL) and transfer learning (TL). This work aims to address the defect of DRL in tedious training time. First, an optimization control modeling of a hybrid tracked vehicle is built, wherein the elaborate powertrain components are introduced. Then, a bi-level control framework is constructed to derive the energy management strategies (EMSs). The upper-level is applying the particular deep deterministic policy gradient (DDPG) algorithms for EMS training at different speed intervals. The lower-level is employing the TL method to transform the pre-trained neural networks for a novel driving cycle. Finally, a series of experiments are executed to prove the effectiveness of the presented control framework. The optimality and adaptability of the formulated EMS are illuminated. The founded DRL and TL-enabled control policy is capable of enhancing energy efficiency and improving system performance." @default.
- W3086953995 created "2020-09-21" @default.
- W3086953995 creator A5017625507 @default.
- W3086953995 creator A5046781760 @default.
- W3086953995 creator A5061671556 @default.
- W3086953995 creator A5066589073 @default.
- W3086953995 creator A5077232157 @default.
- W3086953995 creator A5082173143 @default.
- W3086953995 creator A5090413997 @default.
- W3086953995 date "2020-01-01" @default.
- W3086953995 modified "2023-10-14" @default.
- W3086953995 title "Transfer Deep Reinforcement Learning-Enabled Energy Management Strategy for Hybrid Tracked Vehicle" @default.
- W3086953995 cites W2008791002 @default.
- W3086953995 cites W2076802686 @default.
- W3086953995 cites W2165698076 @default.
- W3086953995 cites W2216723610 @default.
- W3086953995 cites W2257979135 @default.
- W3086953995 cites W2310937270 @default.
- W3086953995 cites W2501848157 @default.
- W3086953995 cites W2509918487 @default.
- W3086953995 cites W2564551285 @default.
- W3086953995 cites W2580234402 @default.
- W3086953995 cites W2588815041 @default.
- W3086953995 cites W2619984247 @default.
- W3086953995 cites W2745090846 @default.
- W3086953995 cites W2752182867 @default.
- W3086953995 cites W2769605893 @default.
- W3086953995 cites W2784092749 @default.
- W3086953995 cites W2784682362 @default.
- W3086953995 cites W2801441281 @default.
- W3086953995 cites W2825903071 @default.
- W3086953995 cites W2901472231 @default.
- W3086953995 cites W2920406591 @default.
- W3086953995 cites W2922677020 @default.
- W3086953995 cites W2936616423 @default.
- W3086953995 cites W2945493933 @default.
- W3086953995 cites W2953491274 @default.
- W3086953995 cites W2970566041 @default.
- W3086953995 cites W2971254261 @default.
- W3086953995 cites W2973170470 @default.
- W3086953995 cites W2973588514 @default.
- W3086953995 cites W2974005385 @default.
- W3086953995 cites W2989832664 @default.
- W3086953995 cites W2990975667 @default.
- W3086953995 cites W3009193590 @default.
- W3086953995 cites W3015423868 @default.
- W3086953995 cites W3016533673 @default.
- W3086953995 doi "https://doi.org/10.1109/access.2020.3022944" @default.
- W3086953995 hasPublicationYear "2020" @default.
- W3086953995 type Work @default.
- W3086953995 sameAs 3086953995 @default.
- W3086953995 citedByCount "19" @default.
- W3086953995 countsByYear W30869539952020 @default.
- W3086953995 countsByYear W30869539952021 @default.
- W3086953995 countsByYear W30869539952022 @default.
- W3086953995 countsByYear W30869539952023 @default.
- W3086953995 crossrefType "journal-article" @default.
- W3086953995 hasAuthorship W3086953995A5017625507 @default.
- W3086953995 hasAuthorship W3086953995A5046781760 @default.
- W3086953995 hasAuthorship W3086953995A5061671556 @default.
- W3086953995 hasAuthorship W3086953995A5066589073 @default.
- W3086953995 hasAuthorship W3086953995A5077232157 @default.
- W3086953995 hasAuthorship W3086953995A5082173143 @default.
- W3086953995 hasAuthorship W3086953995A5090413997 @default.
- W3086953995 hasBestOaLocation W30869539951 @default.
- W3086953995 hasConcept C105795698 @default.
- W3086953995 hasConcept C121332964 @default.
- W3086953995 hasConcept C127413603 @default.
- W3086953995 hasConcept C133731056 @default.
- W3086953995 hasConcept C144171764 @default.
- W3086953995 hasConcept C150899416 @default.
- W3086953995 hasConcept C154945302 @default.
- W3086953995 hasConcept C163258240 @default.
- W3086953995 hasConcept C171146098 @default.
- W3086953995 hasConcept C177606310 @default.
- W3086953995 hasConcept C186370098 @default.
- W3086953995 hasConcept C18903297 @default.
- W3086953995 hasConcept C2776422217 @default.
- W3086953995 hasConcept C2781260460 @default.
- W3086953995 hasConcept C33923547 @default.
- W3086953995 hasConcept C41008148 @default.
- W3086953995 hasConcept C50644808 @default.
- W3086953995 hasConcept C62520636 @default.
- W3086953995 hasConcept C76047896 @default.
- W3086953995 hasConcept C7817414 @default.
- W3086953995 hasConcept C86803240 @default.
- W3086953995 hasConcept C97355855 @default.
- W3086953995 hasConcept C97541855 @default.
- W3086953995 hasConceptScore W3086953995C105795698 @default.
- W3086953995 hasConceptScore W3086953995C121332964 @default.
- W3086953995 hasConceptScore W3086953995C127413603 @default.
- W3086953995 hasConceptScore W3086953995C133731056 @default.
- W3086953995 hasConceptScore W3086953995C144171764 @default.
- W3086953995 hasConceptScore W3086953995C150899416 @default.
- W3086953995 hasConceptScore W3086953995C154945302 @default.
- W3086953995 hasConceptScore W3086953995C163258240 @default.
- W3086953995 hasConceptScore W3086953995C171146098 @default.
- W3086953995 hasConceptScore W3086953995C177606310 @default.