Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087032567> ?p ?o ?g. }
- W3087032567 endingPage "639" @default.
- W3087032567 startingPage "632" @default.
- W3087032567 abstract "The prediction of particle collection is important in designing and operating an electrostatic precipitator (ESP). In this work, a three–layer artificial neural network (ANN) was developed to predict the wet ESP performance under various conditions. The mean square error (MSE), standard deviation error (SDE), and variance account for (VAF) were used to evaluate the ANN model. The univariate analysis method was used to determine the contribution weight of each parameter. The MSE, SDE, and VAF for the trained ANN model were 0.0027%, 0.0362%, and 97.95%, respectively. The current decrease with operation time accounted for the inaccurate evaluation of wet ESP performance. The operating voltage, corona current, gas temperature, and residence time contributed 61.53%, 36.65%, 1.26%, and 0.56% to particle collection respectively. Furthermore, current and voltage dominated the particle collection in different regions. The research findings provide a valuable research approach to retrofit the design and operation of wet ESPs." @default.
- W3087032567 created "2020-09-25" @default.
- W3087032567 creator A5025332292 @default.
- W3087032567 creator A5027466884 @default.
- W3087032567 creator A5032264029 @default.
- W3087032567 creator A5037372036 @default.
- W3087032567 creator A5040589965 @default.
- W3087032567 creator A5050414363 @default.
- W3087032567 creator A5051935973 @default.
- W3087032567 creator A5075603590 @default.
- W3087032567 creator A5085125863 @default.
- W3087032567 date "2021-01-01" @default.
- W3087032567 modified "2023-10-10" @default.
- W3087032567 title "Predicting particle collection performance of a wet electrostatic precipitator under varied conditions with artificial neural networks" @default.
- W3087032567 cites W1157421975 @default.
- W3087032567 cites W1817445719 @default.
- W3087032567 cites W1916166419 @default.
- W3087032567 cites W2031923148 @default.
- W3087032567 cites W2042544297 @default.
- W3087032567 cites W2042728365 @default.
- W3087032567 cites W2042991449 @default.
- W3087032567 cites W2055980856 @default.
- W3087032567 cites W2056201960 @default.
- W3087032567 cites W2090270468 @default.
- W3087032567 cites W2093888558 @default.
- W3087032567 cites W2179989076 @default.
- W3087032567 cites W2228692972 @default.
- W3087032567 cites W2412324079 @default.
- W3087032567 cites W2480412830 @default.
- W3087032567 cites W2522897781 @default.
- W3087032567 cites W2525110734 @default.
- W3087032567 cites W2530700944 @default.
- W3087032567 cites W2531909176 @default.
- W3087032567 cites W2551654753 @default.
- W3087032567 cites W2725571986 @default.
- W3087032567 cites W2782096778 @default.
- W3087032567 cites W2790525740 @default.
- W3087032567 cites W2794529164 @default.
- W3087032567 cites W2803882035 @default.
- W3087032567 cites W2883626389 @default.
- W3087032567 cites W2888510681 @default.
- W3087032567 cites W2888513078 @default.
- W3087032567 cites W2890548143 @default.
- W3087032567 cites W2905369613 @default.
- W3087032567 cites W2932327056 @default.
- W3087032567 cites W2942549247 @default.
- W3087032567 cites W2953489836 @default.
- W3087032567 cites W2955076741 @default.
- W3087032567 cites W2958153141 @default.
- W3087032567 cites W2967892088 @default.
- W3087032567 cites W2969740152 @default.
- W3087032567 cites W3005702530 @default.
- W3087032567 cites W3009814868 @default.
- W3087032567 doi "https://doi.org/10.1016/j.powtec.2020.09.027" @default.
- W3087032567 hasPublicationYear "2021" @default.
- W3087032567 type Work @default.
- W3087032567 sameAs 3087032567 @default.
- W3087032567 citedByCount "26" @default.
- W3087032567 countsByYear W30870325672020 @default.
- W3087032567 countsByYear W30870325672021 @default.
- W3087032567 countsByYear W30870325672022 @default.
- W3087032567 countsByYear W30870325672023 @default.
- W3087032567 crossrefType "journal-article" @default.
- W3087032567 hasAuthorship W3087032567A5025332292 @default.
- W3087032567 hasAuthorship W3087032567A5027466884 @default.
- W3087032567 hasAuthorship W3087032567A5032264029 @default.
- W3087032567 hasAuthorship W3087032567A5037372036 @default.
- W3087032567 hasAuthorship W3087032567A5040589965 @default.
- W3087032567 hasAuthorship W3087032567A5050414363 @default.
- W3087032567 hasAuthorship W3087032567A5051935973 @default.
- W3087032567 hasAuthorship W3087032567A5075603590 @default.
- W3087032567 hasAuthorship W3087032567A5085125863 @default.
- W3087032567 hasConcept C105795698 @default.
- W3087032567 hasConcept C111368507 @default.
- W3087032567 hasConcept C119599485 @default.
- W3087032567 hasConcept C119857082 @default.
- W3087032567 hasConcept C127313418 @default.
- W3087032567 hasConcept C127413603 @default.
- W3087032567 hasConcept C139945424 @default.
- W3087032567 hasConcept C165801399 @default.
- W3087032567 hasConcept C22679943 @default.
- W3087032567 hasConcept C2776327988 @default.
- W3087032567 hasConcept C2778517922 @default.
- W3087032567 hasConcept C33923547 @default.
- W3087032567 hasConcept C39432304 @default.
- W3087032567 hasConcept C41008148 @default.
- W3087032567 hasConcept C44154836 @default.
- W3087032567 hasConcept C50644808 @default.
- W3087032567 hasConceptScore W3087032567C105795698 @default.
- W3087032567 hasConceptScore W3087032567C111368507 @default.
- W3087032567 hasConceptScore W3087032567C119599485 @default.
- W3087032567 hasConceptScore W3087032567C119857082 @default.
- W3087032567 hasConceptScore W3087032567C127313418 @default.
- W3087032567 hasConceptScore W3087032567C127413603 @default.
- W3087032567 hasConceptScore W3087032567C139945424 @default.
- W3087032567 hasConceptScore W3087032567C165801399 @default.
- W3087032567 hasConceptScore W3087032567C22679943 @default.
- W3087032567 hasConceptScore W3087032567C2776327988 @default.