Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087156149> ?p ?o ?g. }
- W3087156149 endingPage "e676" @default.
- W3087156149 startingPage "e667" @default.
- W3087156149 abstract "Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use AI models in precision medicine, and as an example, how AI models can accelerate COVID-19 drug repurposing. Rapidly developing, powerful, and innovative AI and network medicine technologies can expedite therapeutic development. This Review provides a strong rationale for using AI-based assistive tools for drug repurposing medications for human disease, including during the COVID-19 pandemic." @default.
- W3087156149 created "2020-09-25" @default.
- W3087156149 creator A5021122269 @default.
- W3087156149 creator A5025357844 @default.
- W3087156149 creator A5076504705 @default.
- W3087156149 creator A5077231313 @default.
- W3087156149 creator A5086529957 @default.
- W3087156149 date "2020-12-01" @default.
- W3087156149 modified "2023-10-17" @default.
- W3087156149 title "Artificial intelligence in COVID-19 drug repurposing" @default.
- W3087156149 cites W1498436455 @default.
- W3087156149 cites W1965701254 @default.
- W3087156149 cites W1967114732 @default.
- W3087156149 cites W1995416038 @default.
- W3087156149 cites W1999822211 @default.
- W3087156149 cites W2001771035 @default.
- W3087156149 cites W2029124536 @default.
- W3087156149 cites W2058924226 @default.
- W3087156149 cites W2088263677 @default.
- W3087156149 cites W2093313266 @default.
- W3087156149 cites W2104608657 @default.
- W3087156149 cites W2150291618 @default.
- W3087156149 cites W2151868700 @default.
- W3087156149 cites W2171353131 @default.
- W3087156149 cites W2180085345 @default.
- W3087156149 cites W2397757171 @default.
- W3087156149 cites W2462271528 @default.
- W3087156149 cites W2520699286 @default.
- W3087156149 cites W2560688864 @default.
- W3087156149 cites W2578240541 @default.
- W3087156149 cites W2734784508 @default.
- W3087156149 cites W2740946158 @default.
- W3087156149 cites W2781234819 @default.
- W3087156149 cites W2789890016 @default.
- W3087156149 cites W2790179710 @default.
- W3087156149 cites W2806834952 @default.
- W3087156149 cites W2808686685 @default.
- W3087156149 cites W2826750344 @default.
- W3087156149 cites W2900834200 @default.
- W3087156149 cites W2919115771 @default.
- W3087156149 cites W2938214930 @default.
- W3087156149 cites W2945027804 @default.
- W3087156149 cites W2972433884 @default.
- W3087156149 cites W3004919484 @default.
- W3087156149 cites W3009912996 @default.
- W3087156149 cites W3010673910 @default.
- W3087156149 cites W3011072970 @default.
- W3087156149 cites W3012994592 @default.
- W3087156149 cites W3017302293 @default.
- W3087156149 cites W3018517500 @default.
- W3087156149 cites W3021845694 @default.
- W3087156149 cites W3022285953 @default.
- W3087156149 cites W3022734398 @default.
- W3087156149 cites W3023082818 @default.
- W3087156149 cites W3023640683 @default.
- W3087156149 cites W3023724901 @default.
- W3087156149 cites W3023751598 @default.
- W3087156149 cites W3027382706 @default.
- W3087156149 cites W3032677067 @default.
- W3087156149 cites W3033955124 @default.
- W3087156149 cites W3040684387 @default.
- W3087156149 cites W3040801404 @default.
- W3087156149 cites W3041467169 @default.
- W3087156149 cites W3041781301 @default.
- W3087156149 cites W3042860993 @default.
- W3087156149 cites W3044416430 @default.
- W3087156149 cites W3084601775 @default.
- W3087156149 cites W3105705953 @default.
- W3087156149 cites W324102958 @default.
- W3087156149 doi "https://doi.org/10.1016/s2589-7500(20)30192-8" @default.
- W3087156149 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7500917" @default.
- W3087156149 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32984792" @default.
- W3087156149 hasPublicationYear "2020" @default.
- W3087156149 type Work @default.
- W3087156149 sameAs 3087156149 @default.
- W3087156149 citedByCount "315" @default.
- W3087156149 countsByYear W30871561492020 @default.
- W3087156149 countsByYear W30871561492021 @default.
- W3087156149 countsByYear W30871561492022 @default.
- W3087156149 countsByYear W30871561492023 @default.
- W3087156149 crossrefType "journal-article" @default.
- W3087156149 hasAuthorship W3087156149A5021122269 @default.
- W3087156149 hasAuthorship W3087156149A5025357844 @default.
- W3087156149 hasAuthorship W3087156149A5076504705 @default.
- W3087156149 hasAuthorship W3087156149A5077231313 @default.
- W3087156149 hasAuthorship W3087156149A5086529957 @default.
- W3087156149 hasBestOaLocation W30871561491 @default.
- W3087156149 hasConcept C103637391 @default.
- W3087156149 hasConcept C124101348 @default.
- W3087156149 hasConcept C127413603 @default.
- W3087156149 hasConcept C142724271 @default.
- W3087156149 hasConcept C154945302 @default.
- W3087156149 hasConcept C163763905 @default.
- W3087156149 hasConcept C166957645 @default.
- W3087156149 hasConcept C2522767166 @default.
- W3087156149 hasConcept C2779134260 @default.
- W3087156149 hasConcept C2780035454 @default.
- W3087156149 hasConcept C3008058167 @default.