Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087169961> ?p ?o ?g. }
- W3087169961 abstract "To minimize the accelerating amount of time invested in the biomedical literature search, numerous approaches for automated knowledge extraction have been proposed. Relation extraction is one such task where semantic relations between the entities are identified from the free text. In the biomedical domain, extraction of regulatory pathways, metabolic processes, adverse drug reaction or disease models necessitates knowledge from the individual relations, for example, physical or regulatory interactions between genes, proteins, drugs, chemical, disease or phenotype. In this paper, we study the relation extraction task from three major biomedical and clinical tasks, namely drug-drug interaction, protein-protein interaction, and medical concept relation extraction. Towards this, we model the relation extraction problem in multi-task learning (MTL) framework and introduce for the first time the concept of structured self-attentive network complemented with the adversarial learning approach for the prediction of relationships from the biomedical and clinical text. The fundamental notion of MTL is to simultaneously learn multiple problems together by utilizing the concepts of the shared representation. Additionally, we also generate the highly efficient single task model which exploits the shortest dependency path embedding learned over the attentive gated recurrent unit to compare our proposed MTL models. The framework we propose significantly improves overall the baselines (deep learning techniques) and single-task models for predicting the relationships, without compromising on the performance of all the tasks." @default.
- W3087169961 created "2020-09-25" @default.
- W3087169961 creator A5020867608 @default.
- W3087169961 creator A5021680636 @default.
- W3087169961 creator A5060797340 @default.
- W3087169961 creator A5085370631 @default.
- W3087169961 date "2020-09-20" @default.
- W3087169961 modified "2023-09-26" @default.
- W3087169961 title "Relation Extraction from Biomedical and Clinical Text: Unified Multitask Learning Framework" @default.
- W3087169961 cites W1493270114 @default.
- W3087169961 cites W151685798 @default.
- W3087169961 cites W1604685658 @default.
- W3087169961 cites W1986704581 @default.
- W3087169961 cites W1987170279 @default.
- W3087169961 cites W2024862171 @default.
- W3087169961 cites W2036935277 @default.
- W3087169961 cites W2046844528 @default.
- W3087169961 cites W2048059249 @default.
- W3087169961 cites W2064675550 @default.
- W3087169961 cites W2064695567 @default.
- W3087169961 cites W2067704478 @default.
- W3087169961 cites W2098551466 @default.
- W3087169961 cites W2099471712 @default.
- W3087169961 cites W2104381725 @default.
- W3087169961 cites W2109070394 @default.
- W3087169961 cites W2110279753 @default.
- W3087169961 cites W2121844933 @default.
- W3087169961 cites W2129367118 @default.
- W3087169961 cites W2132288458 @default.
- W3087169961 cites W2136437513 @default.
- W3087169961 cites W2138627627 @default.
- W3087169961 cites W2148488766 @default.
- W3087169961 cites W2152269015 @default.
- W3087169961 cites W2155699197 @default.
- W3087169961 cites W2160238006 @default.
- W3087169961 cites W2162965868 @default.
- W3087169961 cites W2166034984 @default.
- W3087169961 cites W2166111585 @default.
- W3087169961 cites W2166474856 @default.
- W3087169961 cites W2168041406 @default.
- W3087169961 cites W2182852176 @default.
- W3087169961 cites W2185066109 @default.
- W3087169961 cites W2250619635 @default.
- W3087169961 cites W2251104810 @default.
- W3087169961 cites W2251454071 @default.
- W3087169961 cites W2251756410 @default.
- W3087169961 cites W2251936311 @default.
- W3087169961 cites W2251957306 @default.
- W3087169961 cites W2264517602 @default.
- W3087169961 cites W2370746078 @default.
- W3087169961 cites W2465246611 @default.
- W3087169961 cites W2470673105 @default.
- W3087169961 cites W2485374661 @default.
- W3087169961 cites W2512456704 @default.
- W3087169961 cites W2556858158 @default.
- W3087169961 cites W2579132201 @default.
- W3087169961 cites W2597655663 @default.
- W3087169961 cites W2608694595 @default.
- W3087169961 cites W2726375170 @default.
- W3087169961 cites W2726797548 @default.
- W3087169961 cites W2740269899 @default.
- W3087169961 cites W2740782465 @default.
- W3087169961 cites W2743028754 @default.
- W3087169961 cites W2749995488 @default.
- W3087169961 cites W2755814313 @default.
- W3087169961 cites W2761525601 @default.
- W3087169961 cites W2773368817 @default.
- W3087169961 cites W2780858805 @default.
- W3087169961 cites W2785001576 @default.
- W3087169961 cites W2785531515 @default.
- W3087169961 cites W2786839164 @default.
- W3087169961 cites W2804174258 @default.
- W3087169961 cites W2841071937 @default.
- W3087169961 cites W2890092733 @default.
- W3087169961 cites W2904726360 @default.
- W3087169961 cites W2924331208 @default.
- W3087169961 cites W2962897020 @default.
- W3087169961 cites W2963706121 @default.
- W3087169961 cites W2963826681 @default.
- W3087169961 cites W2964026782 @default.
- W3087169961 cites W2964036454 @default.
- W3087169961 cites W2964199361 @default.
- W3087169961 cites W2964348125 @default.
- W3087169961 cites W3007211628 @default.
- W3087169961 cites W3016973506 @default.
- W3087169961 cites W3030678071 @default.
- W3087169961 cites W2509544553 @default.
- W3087169961 cites W2522435748 @default.
- W3087169961 hasPublicationYear "2020" @default.
- W3087169961 type Work @default.
- W3087169961 sameAs 3087169961 @default.
- W3087169961 citedByCount "0" @default.
- W3087169961 crossrefType "posted-content" @default.
- W3087169961 hasAuthorship W3087169961A5020867608 @default.
- W3087169961 hasAuthorship W3087169961A5021680636 @default.
- W3087169961 hasAuthorship W3087169961A5060797340 @default.
- W3087169961 hasAuthorship W3087169961A5085370631 @default.
- W3087169961 hasConcept C119857082 @default.
- W3087169961 hasConcept C124101348 @default.
- W3087169961 hasConcept C134306372 @default.