Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087177731> ?p ?o ?g. }
- W3087177731 abstract "Abstract The purpose of this study was to evaluate and compare the diagnostic performances of the deep convolutional neural network (CNN) and expert radiologists for differentiating thyroid nodules on ultrasonography (US), and to validate the results in multicenter data sets. This multicenter retrospective study collected 15,375 US images of thyroid nodules for algorithm development (n = 13,560, Severance Hospital, SH training set), the internal test (n = 634, SH test set), and the external test (n = 781, Samsung Medical Center, SMC set; n = 200, CHA Bundang Medical Center, CBMC set; n = 200, Kyung Hee University Hospital, KUH set). Two individual CNNs and two classification ensembles (CNNE1 and CNNE2) were tested to differentiate malignant and benign thyroid nodules. CNNs demonstrated high area under the curves (AUCs) to diagnose malignant thyroid nodules (0.898–0.937 for the internal test set and 0.821–0.885 for the external test sets). AUC was significantly higher for CNNE2 than radiologists in the SH test set (0.932 vs. 0.840, P < 0.001). AUC was not significantly different between CNNE2 and radiologists in the external test sets ( P = 0.113, 0.126, and 0.690). CNN showed diagnostic performances comparable to expert radiologists for differentiating thyroid nodules on US in both the internal and external test sets ." @default.
- W3087177731 created "2020-09-25" @default.
- W3087177731 creator A5000741482 @default.
- W3087177731 creator A5006743557 @default.
- W3087177731 creator A5016719982 @default.
- W3087177731 creator A5024738648 @default.
- W3087177731 creator A5027381296 @default.
- W3087177731 creator A5042526369 @default.
- W3087177731 creator A5050249567 @default.
- W3087177731 creator A5050507605 @default.
- W3087177731 creator A5065194895 @default.
- W3087177731 creator A5067279479 @default.
- W3087177731 creator A5080227506 @default.
- W3087177731 creator A5081115247 @default.
- W3087177731 creator A5081154222 @default.
- W3087177731 creator A5091734063 @default.
- W3087177731 date "2020-09-17" @default.
- W3087177731 modified "2023-10-04" @default.
- W3087177731 title "Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network" @default.
- W3087177731 cites W1849277567 @default.
- W3087177731 cites W1963950405 @default.
- W3087177731 cites W2031898975 @default.
- W3087177731 cites W2038680452 @default.
- W3087177731 cites W2077963729 @default.
- W3087177731 cites W2095702511 @default.
- W3087177731 cites W2097117768 @default.
- W3087177731 cites W2108736975 @default.
- W3087177731 cites W2117539524 @default.
- W3087177731 cites W2161381512 @default.
- W3087177731 cites W2162467118 @default.
- W3087177731 cites W2165698076 @default.
- W3087177731 cites W2183341477 @default.
- W3087177731 cites W2194775991 @default.
- W3087177731 cites W2224991823 @default.
- W3087177731 cites W2463704661 @default.
- W3087177731 cites W2518674481 @default.
- W3087177731 cites W2592929672 @default.
- W3087177731 cites W2603963723 @default.
- W3087177731 cites W2767236661 @default.
- W3087177731 cites W2769440118 @default.
- W3087177731 cites W2889646458 @default.
- W3087177731 cites W2905949064 @default.
- W3087177731 cites W2906598409 @default.
- W3087177731 cites W2910443141 @default.
- W3087177731 cites W2911378287 @default.
- W3087177731 cites W2963446712 @default.
- W3087177731 cites W2964350391 @default.
- W3087177731 doi "https://doi.org/10.1038/s41598-020-72270-6" @default.
- W3087177731 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7498581" @default.
- W3087177731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32943696" @default.
- W3087177731 hasPublicationYear "2020" @default.
- W3087177731 type Work @default.
- W3087177731 sameAs 3087177731 @default.
- W3087177731 citedByCount "25" @default.
- W3087177731 countsByYear W30871777312021 @default.
- W3087177731 countsByYear W30871777312022 @default.
- W3087177731 countsByYear W30871777312023 @default.
- W3087177731 crossrefType "journal-article" @default.
- W3087177731 hasAuthorship W3087177731A5000741482 @default.
- W3087177731 hasAuthorship W3087177731A5006743557 @default.
- W3087177731 hasAuthorship W3087177731A5016719982 @default.
- W3087177731 hasAuthorship W3087177731A5024738648 @default.
- W3087177731 hasAuthorship W3087177731A5027381296 @default.
- W3087177731 hasAuthorship W3087177731A5042526369 @default.
- W3087177731 hasAuthorship W3087177731A5050249567 @default.
- W3087177731 hasAuthorship W3087177731A5050507605 @default.
- W3087177731 hasAuthorship W3087177731A5065194895 @default.
- W3087177731 hasAuthorship W3087177731A5067279479 @default.
- W3087177731 hasAuthorship W3087177731A5080227506 @default.
- W3087177731 hasAuthorship W3087177731A5081115247 @default.
- W3087177731 hasAuthorship W3087177731A5081154222 @default.
- W3087177731 hasAuthorship W3087177731A5091734063 @default.
- W3087177731 hasBestOaLocation W30871777311 @default.
- W3087177731 hasConcept C126322002 @default.
- W3087177731 hasConcept C126838900 @default.
- W3087177731 hasConcept C151730666 @default.
- W3087177731 hasConcept C154945302 @default.
- W3087177731 hasConcept C169903167 @default.
- W3087177731 hasConcept C177264268 @default.
- W3087177731 hasConcept C199360897 @default.
- W3087177731 hasConcept C2777267654 @default.
- W3087177731 hasConcept C2779022025 @default.
- W3087177731 hasConcept C2989005 @default.
- W3087177731 hasConcept C41008148 @default.
- W3087177731 hasConcept C526584372 @default.
- W3087177731 hasConcept C529618451 @default.
- W3087177731 hasConcept C71924100 @default.
- W3087177731 hasConcept C81363708 @default.
- W3087177731 hasConcept C86803240 @default.
- W3087177731 hasConceptScore W3087177731C126322002 @default.
- W3087177731 hasConceptScore W3087177731C126838900 @default.
- W3087177731 hasConceptScore W3087177731C151730666 @default.
- W3087177731 hasConceptScore W3087177731C154945302 @default.
- W3087177731 hasConceptScore W3087177731C169903167 @default.
- W3087177731 hasConceptScore W3087177731C177264268 @default.
- W3087177731 hasConceptScore W3087177731C199360897 @default.
- W3087177731 hasConceptScore W3087177731C2777267654 @default.
- W3087177731 hasConceptScore W3087177731C2779022025 @default.
- W3087177731 hasConceptScore W3087177731C2989005 @default.
- W3087177731 hasConceptScore W3087177731C41008148 @default.