Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087191738> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3087191738 endingPage "105761" @default.
- W3087191738 startingPage "105761" @default.
- W3087191738 abstract "The goal of the current study was to develop a method to estimate whole-body injury metrics (WBIMs), which measure the overall impact of injuries, using stochastic injury prediction results from a computational human surrogate. First, hospitalized pedestrian data was queried to identify injuries sustained by pedestrians and their frequencies. Second, with consideration for an understanding of injury mechanisms and the capability of the computational human surrogate, the whole-body was divided into 17 body regions. Then, an injury pattern database was constructed for each body region for various maximum abbreviated injury scale (MAIS) levels. Third, a two-step Monte Carlo sampling process was employed to generate N virtual pedestrians with an assigned list of injuries in AIS codes. Then, the expected values of WBIMs such as injury severity score (ISS), probability of death, whole-body functional capacity index (WBFCI), and lost years of life (LYL), were estimated. Lastly, the proposed method was verified using injury information from the inpatient pedestrian database. Also, the proposed method was applied to pedestrian impact simulations with various impact speeds to estimate the probability of death with respect to the impact speed. The probability of death from the proposed method was compared with those from epidemiological studies. The proposed method accurately estimated WBIMs such as ISS and WBFCI using either for a given distribution of injury risk or MAIS levels. The predicted probability of death with respect to the impact speed showed a good correlation with those from the epidemiological study. These results imply that if we have a human surrogate that can predict the risk of injury accurately, we can accurately estimate WBIMs using the proposed method. The proposed method can simplify a vehicle design optimization process by transforming the multi-objective optimization problem into the single-objective one. Lastly, the proposed method can be applied to other human surrogates such as occupant models." @default.
- W3087191738 created "2020-09-25" @default.
- W3087191738 creator A5003705653 @default.
- W3087191738 creator A5030316382 @default.
- W3087191738 creator A5040215361 @default.
- W3087191738 creator A5042922334 @default.
- W3087191738 creator A5089572393 @default.
- W3087191738 date "2020-11-01" @default.
- W3087191738 modified "2023-09-24" @default.
- W3087191738 title "Monte carlo method for estimating whole-body injury metrics from pedestrian impact simulation results" @default.
- W3087191738 cites W1870023736 @default.
- W3087191738 cites W1905301960 @default.
- W3087191738 cites W1967030298 @default.
- W3087191738 cites W1989063706 @default.
- W3087191738 cites W1989542200 @default.
- W3087191738 cites W1990141999 @default.
- W3087191738 cites W2009326396 @default.
- W3087191738 cites W2011780687 @default.
- W3087191738 cites W2036764625 @default.
- W3087191738 cites W2038513605 @default.
- W3087191738 cites W2050493208 @default.
- W3087191738 cites W2061771240 @default.
- W3087191738 cites W2072817735 @default.
- W3087191738 cites W2075523996 @default.
- W3087191738 cites W2084417698 @default.
- W3087191738 cites W2084667481 @default.
- W3087191738 cites W2091241354 @default.
- W3087191738 cites W2092251660 @default.
- W3087191738 cites W2109688579 @default.
- W3087191738 cites W2119094206 @default.
- W3087191738 cites W2154654095 @default.
- W3087191738 cites W2168567755 @default.
- W3087191738 cites W2513122302 @default.
- W3087191738 cites W2620296084 @default.
- W3087191738 cites W2795198239 @default.
- W3087191738 cites W33858736 @default.
- W3087191738 doi "https://doi.org/10.1016/j.aap.2020.105761" @default.
- W3087191738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32956957" @default.
- W3087191738 hasPublicationYear "2020" @default.
- W3087191738 type Work @default.
- W3087191738 sameAs 3087191738 @default.
- W3087191738 citedByCount "6" @default.
- W3087191738 countsByYear W30871917382020 @default.
- W3087191738 countsByYear W30871917382021 @default.
- W3087191738 countsByYear W30871917382022 @default.
- W3087191738 countsByYear W30871917382023 @default.
- W3087191738 crossrefType "journal-article" @default.
- W3087191738 hasAuthorship W3087191738A5003705653 @default.
- W3087191738 hasAuthorship W3087191738A5030316382 @default.
- W3087191738 hasAuthorship W3087191738A5040215361 @default.
- W3087191738 hasAuthorship W3087191738A5042922334 @default.
- W3087191738 hasAuthorship W3087191738A5089572393 @default.
- W3087191738 hasConcept C105795698 @default.
- W3087191738 hasConcept C127413603 @default.
- W3087191738 hasConcept C19499675 @default.
- W3087191738 hasConcept C22212356 @default.
- W3087191738 hasConcept C2777113093 @default.
- W3087191738 hasConcept C3017944768 @default.
- W3087191738 hasConcept C33923547 @default.
- W3087191738 hasConcept C41008148 @default.
- W3087191738 hasConcept C545542383 @default.
- W3087191738 hasConcept C71924100 @default.
- W3087191738 hasConceptScore W3087191738C105795698 @default.
- W3087191738 hasConceptScore W3087191738C127413603 @default.
- W3087191738 hasConceptScore W3087191738C19499675 @default.
- W3087191738 hasConceptScore W3087191738C22212356 @default.
- W3087191738 hasConceptScore W3087191738C2777113093 @default.
- W3087191738 hasConceptScore W3087191738C3017944768 @default.
- W3087191738 hasConceptScore W3087191738C33923547 @default.
- W3087191738 hasConceptScore W3087191738C41008148 @default.
- W3087191738 hasConceptScore W3087191738C545542383 @default.
- W3087191738 hasConceptScore W3087191738C71924100 @default.
- W3087191738 hasFunder F4320309327 @default.
- W3087191738 hasFunder F4320322120 @default.
- W3087191738 hasLocation W30871917381 @default.
- W3087191738 hasOpenAccess W3087191738 @default.
- W3087191738 hasPrimaryLocation W30871917381 @default.
- W3087191738 hasRelatedWork W2005961628 @default.
- W3087191738 hasRelatedWork W2062013051 @default.
- W3087191738 hasRelatedWork W2520451768 @default.
- W3087191738 hasRelatedWork W2548402296 @default.
- W3087191738 hasRelatedWork W2899360499 @default.
- W3087191738 hasRelatedWork W3121044885 @default.
- W3087191738 hasRelatedWork W3121947844 @default.
- W3087191738 hasRelatedWork W3194224674 @default.
- W3087191738 hasRelatedWork W4206258244 @default.
- W3087191738 hasRelatedWork W568373031 @default.
- W3087191738 hasVolume "147" @default.
- W3087191738 isParatext "false" @default.
- W3087191738 isRetracted "false" @default.
- W3087191738 magId "3087191738" @default.
- W3087191738 workType "article" @default.