Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087225849> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3087225849 endingPage "288" @default.
- W3087225849 startingPage "280" @default.
- W3087225849 abstract "In recent years, deep learning methods have come to the forefront in many areas that require remote sensing, from medicine to agriculture, from defense industry to space research; and these methods have given more successful results as compared to traditional methods. The major difference between deep learning and classical recognition methods is that deep learning methods consider an end-to-end learning scheme which gives rise to learning features from raw data. In this study, we discuss the remote sensing problems and how deep learning can be used to solve these problems with a special focus on medical and defense applications. In particular, we review architectures within the deep learning literature and their use cases." @default.
- W3087225849 created "2020-09-25" @default.
- W3087225849 creator A5008662573 @default.
- W3087225849 creator A5012317612 @default.
- W3087225849 creator A5039914328 @default.
- W3087225849 creator A5074809120 @default.
- W3087225849 date "2020-12-06" @default.
- W3087225849 modified "2023-09-24" @default.
- W3087225849 title "Deep Learning for Medicine and Remote Sensing: A Brief Review" @default.
- W3087225849 cites W2097117768 @default.
- W3087225849 cites W2112796928 @default.
- W3087225849 cites W2194775991 @default.
- W3087225849 cites W2382241830 @default.
- W3087225849 cites W2575766973 @default.
- W3087225849 cites W2730434298 @default.
- W3087225849 cites W2731899572 @default.
- W3087225849 cites W2754136846 @default.
- W3087225849 cites W2775351011 @default.
- W3087225849 cites W2782522152 @default.
- W3087225849 cites W2788202095 @default.
- W3087225849 cites W2801920224 @default.
- W3087225849 cites W2802042319 @default.
- W3087225849 cites W2814508103 @default.
- W3087225849 cites W2821676139 @default.
- W3087225849 cites W2900733456 @default.
- W3087225849 cites W2901009362 @default.
- W3087225849 cites W2901954625 @default.
- W3087225849 cites W2901997892 @default.
- W3087225849 cites W2902874468 @default.
- W3087225849 cites W2902882516 @default.
- W3087225849 cites W2903150666 @default.
- W3087225849 cites W2905441841 @default.
- W3087225849 cites W2908272298 @default.
- W3087225849 cites W2918498292 @default.
- W3087225849 cites W2945367273 @default.
- W3087225849 cites W2974860472 @default.
- W3087225849 cites W3007372240 @default.
- W3087225849 cites W4213147678 @default.
- W3087225849 doi "https://doi.org/10.30897/ijegeo.710913" @default.
- W3087225849 hasPublicationYear "2020" @default.
- W3087225849 type Work @default.
- W3087225849 sameAs 3087225849 @default.
- W3087225849 citedByCount "2" @default.
- W3087225849 countsByYear W30872258492022 @default.
- W3087225849 countsByYear W30872258492023 @default.
- W3087225849 crossrefType "journal-article" @default.
- W3087225849 hasAuthorship W3087225849A5008662573 @default.
- W3087225849 hasAuthorship W3087225849A5012317612 @default.
- W3087225849 hasAuthorship W3087225849A5039914328 @default.
- W3087225849 hasAuthorship W3087225849A5074809120 @default.
- W3087225849 hasBestOaLocation W30872258491 @default.
- W3087225849 hasConcept C108583219 @default.
- W3087225849 hasConcept C119857082 @default.
- W3087225849 hasConcept C120665830 @default.
- W3087225849 hasConcept C121332964 @default.
- W3087225849 hasConcept C132964779 @default.
- W3087225849 hasConcept C154945302 @default.
- W3087225849 hasConcept C192209626 @default.
- W3087225849 hasConcept C199360897 @default.
- W3087225849 hasConcept C2522767166 @default.
- W3087225849 hasConcept C41008148 @default.
- W3087225849 hasConceptScore W3087225849C108583219 @default.
- W3087225849 hasConceptScore W3087225849C119857082 @default.
- W3087225849 hasConceptScore W3087225849C120665830 @default.
- W3087225849 hasConceptScore W3087225849C121332964 @default.
- W3087225849 hasConceptScore W3087225849C132964779 @default.
- W3087225849 hasConceptScore W3087225849C154945302 @default.
- W3087225849 hasConceptScore W3087225849C192209626 @default.
- W3087225849 hasConceptScore W3087225849C199360897 @default.
- W3087225849 hasConceptScore W3087225849C2522767166 @default.
- W3087225849 hasConceptScore W3087225849C41008148 @default.
- W3087225849 hasIssue "3" @default.
- W3087225849 hasLocation W30872258491 @default.
- W3087225849 hasLocation W30872258492 @default.
- W3087225849 hasOpenAccess W3087225849 @default.
- W3087225849 hasPrimaryLocation W30872258491 @default.
- W3087225849 hasRelatedWork W3014300295 @default.
- W3087225849 hasRelatedWork W4223943233 @default.
- W3087225849 hasRelatedWork W4225161397 @default.
- W3087225849 hasRelatedWork W4246751904 @default.
- W3087225849 hasRelatedWork W4309045103 @default.
- W3087225849 hasRelatedWork W4312200629 @default.
- W3087225849 hasRelatedWork W4360585206 @default.
- W3087225849 hasRelatedWork W4364306694 @default.
- W3087225849 hasRelatedWork W4380075502 @default.
- W3087225849 hasRelatedWork W4380086463 @default.
- W3087225849 hasVolume "7" @default.
- W3087225849 isParatext "false" @default.
- W3087225849 isRetracted "false" @default.
- W3087225849 magId "3087225849" @default.
- W3087225849 workType "article" @default.