Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087238889> ?p ?o ?g. }
- W3087238889 endingPage "3016" @default.
- W3087238889 startingPage "3016" @default.
- W3087238889 abstract "Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia and its timely diagnosis remains a major challenge in biomarker discovery. In the present study, we analyzed publicly available high-throughput low-sample -omics datasets from studies in AD blood, by the AutoML technology Just Add Data Bio (JADBIO), to construct accurate predictive models for use as diagnostic biosignatures. Considering data from AD patients and age–sex matched cognitively healthy individuals, we produced three best performing diagnostic biosignatures specific for the presence of AD: A. A 506-feature transcriptomic dataset from 48 AD and 22 controls led to a miRNA-based biosignature via Support Vector Machines with three miRNA predictors (AUC 0.975 (0.906, 1.000)), B. A 38,327-feature transcriptomic dataset from 134 AD and 100 controls led to six mRNA-based statistically equivalent signatures via Classification Random Forests with 25 mRNA predictors (AUC 0.846 (0.778, 0.905)) and C. A 9483-feature proteomic dataset from 25 AD and 37 controls led to a protein-based biosignature via Ridge Logistic Regression with seven protein predictors (AUC 0.921 (0.849, 0.972)). These performance metrics were also validated through the JADBIO pipeline confirming stability. In conclusion, using the automated machine learning tool JADBIO, we produced accurate predictive biosignatures extrapolating available low sample -omics data. These results offer options for minimally invasive blood-based diagnostic tests for AD, awaiting clinical validation based on respective laboratory assays. They also highlight the value of AutoML in biomarker discovery." @default.
- W3087238889 created "2020-09-25" @default.
- W3087238889 creator A5017672200 @default.
- W3087238889 creator A5050179686 @default.
- W3087238889 creator A5059919482 @default.
- W3087238889 creator A5070582381 @default.
- W3087238889 date "2020-09-18" @default.
- W3087238889 modified "2023-10-17" @default.
- W3087238889 title "Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning" @default.
- W3087238889 cites W1960974681 @default.
- W3087238889 cites W2002697968 @default.
- W3087238889 cites W2039133110 @default.
- W3087238889 cites W2092022343 @default.
- W3087238889 cites W2099535442 @default.
- W3087238889 cites W2118258530 @default.
- W3087238889 cites W2122866775 @default.
- W3087238889 cites W2141369175 @default.
- W3087238889 cites W2222867180 @default.
- W3087238889 cites W2298887234 @default.
- W3087238889 cites W2606715885 @default.
- W3087238889 cites W2607317708 @default.
- W3087238889 cites W2621774768 @default.
- W3087238889 cites W2752305606 @default.
- W3087238889 cites W2759487333 @default.
- W3087238889 cites W2792663180 @default.
- W3087238889 cites W2882991329 @default.
- W3087238889 cites W2890610471 @default.
- W3087238889 cites W2895381107 @default.
- W3087238889 cites W2901139514 @default.
- W3087238889 cites W2901933822 @default.
- W3087238889 cites W2903517662 @default.
- W3087238889 cites W2911211113 @default.
- W3087238889 cites W2915790112 @default.
- W3087238889 cites W2963686598 @default.
- W3087238889 cites W2993696118 @default.
- W3087238889 cites W2996431818 @default.
- W3087238889 cites W3006108675 @default.
- W3087238889 cites W3008517864 @default.
- W3087238889 cites W3031631777 @default.
- W3087238889 cites W3040086854 @default.
- W3087238889 cites W4234964068 @default.
- W3087238889 doi "https://doi.org/10.3390/jcm9093016" @default.
- W3087238889 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7563988" @default.
- W3087238889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32962113" @default.
- W3087238889 hasPublicationYear "2020" @default.
- W3087238889 type Work @default.
- W3087238889 sameAs 3087238889 @default.
- W3087238889 citedByCount "27" @default.
- W3087238889 countsByYear W30872388892021 @default.
- W3087238889 countsByYear W30872388892022 @default.
- W3087238889 countsByYear W30872388892023 @default.
- W3087238889 crossrefType "journal-article" @default.
- W3087238889 hasAuthorship W3087238889A5017672200 @default.
- W3087238889 hasAuthorship W3087238889A5050179686 @default.
- W3087238889 hasAuthorship W3087238889A5059919482 @default.
- W3087238889 hasAuthorship W3087238889A5070582381 @default.
- W3087238889 hasBestOaLocation W30872388891 @default.
- W3087238889 hasConcept C104317684 @default.
- W3087238889 hasConcept C119857082 @default.
- W3087238889 hasConcept C12267149 @default.
- W3087238889 hasConcept C124535831 @default.
- W3087238889 hasConcept C126322002 @default.
- W3087238889 hasConcept C138885662 @default.
- W3087238889 hasConcept C151956035 @default.
- W3087238889 hasConcept C154945302 @default.
- W3087238889 hasConcept C157585117 @default.
- W3087238889 hasConcept C169258074 @default.
- W3087238889 hasConcept C2776401178 @default.
- W3087238889 hasConcept C2779134260 @default.
- W3087238889 hasConcept C2781197716 @default.
- W3087238889 hasConcept C41008148 @default.
- W3087238889 hasConcept C41895202 @default.
- W3087238889 hasConcept C46111723 @default.
- W3087238889 hasConcept C55493867 @default.
- W3087238889 hasConcept C60644358 @default.
- W3087238889 hasConcept C70721500 @default.
- W3087238889 hasConcept C71924100 @default.
- W3087238889 hasConcept C86803240 @default.
- W3087238889 hasConceptScore W3087238889C104317684 @default.
- W3087238889 hasConceptScore W3087238889C119857082 @default.
- W3087238889 hasConceptScore W3087238889C12267149 @default.
- W3087238889 hasConceptScore W3087238889C124535831 @default.
- W3087238889 hasConceptScore W3087238889C126322002 @default.
- W3087238889 hasConceptScore W3087238889C138885662 @default.
- W3087238889 hasConceptScore W3087238889C151956035 @default.
- W3087238889 hasConceptScore W3087238889C154945302 @default.
- W3087238889 hasConceptScore W3087238889C157585117 @default.
- W3087238889 hasConceptScore W3087238889C169258074 @default.
- W3087238889 hasConceptScore W3087238889C2776401178 @default.
- W3087238889 hasConceptScore W3087238889C2779134260 @default.
- W3087238889 hasConceptScore W3087238889C2781197716 @default.
- W3087238889 hasConceptScore W3087238889C41008148 @default.
- W3087238889 hasConceptScore W3087238889C41895202 @default.
- W3087238889 hasConceptScore W3087238889C46111723 @default.
- W3087238889 hasConceptScore W3087238889C55493867 @default.
- W3087238889 hasConceptScore W3087238889C60644358 @default.
- W3087238889 hasConceptScore W3087238889C70721500 @default.
- W3087238889 hasConceptScore W3087238889C71924100 @default.