Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087314568> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3087314568 abstract "Due to a large number of potential applications, a good deal of effort has been recently made towards creating machine learning models that can recognize evoked emotions from one’s physiological recordings. In particular, researchers are investigating the use of EEG as a low-cost, non-invasive method. However, the poor homogeneity of the EEG activity across participants hinders the implementation of any such system by a time-consuming calibration stage. In this study, we introduce a new participant-based feature normalization method, so-called stratified normalization, for training deep neural networks in task of cross-subject emotion classification from EEG signals. The new method is able to subtract inter-participant variability while maintaining the emotion information in the data. We carried out our analysis on the SEED dataset, which contains 62-channel EEG recordings collected from 15 participants while watching film clips. Results demonstrate that networks trained with stratified normalization outperformed standard training with batch normalization significantly. In addition, the highest model performance was achieved when extracting EEG features with the multitaper method, reaching a classification accuracy of 91.6% for two emotion categories (positive and negative) and 79.6% for three (also neutral). This analysis provides us with great insight into the potential benefits that stratified normalization can have when developing any cross-subject model based on EEG." @default.
- W3087314568 created "2020-09-25" @default.
- W3087314568 creator A5003617950 @default.
- W3087314568 creator A5014368918 @default.
- W3087314568 creator A5073240026 @default.
- W3087314568 creator A5076340263 @default.
- W3087314568 date "2020-09-20" @default.
- W3087314568 modified "2023-09-25" @default.
- W3087314568 title "Cross-Subject EEG-Based Emotion Recognition through Neural Networks with Stratified Normalization" @default.
- W3087314568 cites W1525254066 @default.
- W3087314568 cites W1947251450 @default.
- W3087314568 cites W1970727126 @default.
- W3087314568 cites W2002055708 @default.
- W3087314568 cites W2053906014 @default.
- W3087314568 cites W2068955351 @default.
- W3087314568 cites W2122098299 @default.
- W3087314568 cites W2132361143 @default.
- W3087314568 cites W2150090087 @default.
- W3087314568 cites W2489647874 @default.
- W3087314568 cites W2537229885 @default.
- W3087314568 cites W2604825588 @default.
- W3087314568 cites W2611647730 @default.
- W3087314568 cites W2786768213 @default.
- W3087314568 cites W2790814155 @default.
- W3087314568 cites W2799657112 @default.
- W3087314568 cites W2810418809 @default.
- W3087314568 cites W2889326414 @default.
- W3087314568 cites W2899532291 @default.
- W3087314568 cites W2915893085 @default.
- W3087314568 cites W2919923656 @default.
- W3087314568 cites W2932154953 @default.
- W3087314568 cites W2954204245 @default.
- W3087314568 cites W2963009172 @default.
- W3087314568 cites W2964896424 @default.
- W3087314568 cites W3001587372 @default.
- W3087314568 cites W3010188900 @default.
- W3087314568 cites W3014215018 @default.
- W3087314568 cites W4235806447 @default.
- W3087314568 doi "https://doi.org/10.1101/2020.09.18.304501" @default.
- W3087314568 hasPublicationYear "2020" @default.
- W3087314568 type Work @default.
- W3087314568 sameAs 3087314568 @default.
- W3087314568 citedByCount "2" @default.
- W3087314568 countsByYear W30873145682022 @default.
- W3087314568 countsByYear W30873145682023 @default.
- W3087314568 crossrefType "posted-content" @default.
- W3087314568 hasAuthorship W3087314568A5003617950 @default.
- W3087314568 hasAuthorship W3087314568A5014368918 @default.
- W3087314568 hasAuthorship W3087314568A5073240026 @default.
- W3087314568 hasAuthorship W3087314568A5076340263 @default.
- W3087314568 hasBestOaLocation W30873145681 @default.
- W3087314568 hasConcept C118552586 @default.
- W3087314568 hasConcept C119857082 @default.
- W3087314568 hasConcept C136886441 @default.
- W3087314568 hasConcept C144024400 @default.
- W3087314568 hasConcept C153180895 @default.
- W3087314568 hasConcept C154945302 @default.
- W3087314568 hasConcept C15744967 @default.
- W3087314568 hasConcept C19165224 @default.
- W3087314568 hasConcept C28490314 @default.
- W3087314568 hasConcept C41008148 @default.
- W3087314568 hasConcept C50644808 @default.
- W3087314568 hasConcept C522805319 @default.
- W3087314568 hasConceptScore W3087314568C118552586 @default.
- W3087314568 hasConceptScore W3087314568C119857082 @default.
- W3087314568 hasConceptScore W3087314568C136886441 @default.
- W3087314568 hasConceptScore W3087314568C144024400 @default.
- W3087314568 hasConceptScore W3087314568C153180895 @default.
- W3087314568 hasConceptScore W3087314568C154945302 @default.
- W3087314568 hasConceptScore W3087314568C15744967 @default.
- W3087314568 hasConceptScore W3087314568C19165224 @default.
- W3087314568 hasConceptScore W3087314568C28490314 @default.
- W3087314568 hasConceptScore W3087314568C41008148 @default.
- W3087314568 hasConceptScore W3087314568C50644808 @default.
- W3087314568 hasConceptScore W3087314568C522805319 @default.
- W3087314568 hasLocation W30873145681 @default.
- W3087314568 hasLocation W30873145682 @default.
- W3087314568 hasOpenAccess W3087314568 @default.
- W3087314568 hasPrimaryLocation W30873145681 @default.
- W3087314568 hasRelatedWork W1863050261 @default.
- W3087314568 hasRelatedWork W2016839265 @default.
- W3087314568 hasRelatedWork W2026355170 @default.
- W3087314568 hasRelatedWork W2071846378 @default.
- W3087314568 hasRelatedWork W2626335822 @default.
- W3087314568 hasRelatedWork W2755143675 @default.
- W3087314568 hasRelatedWork W2946038180 @default.
- W3087314568 hasRelatedWork W1629725936 @default.
- W3087314568 hasRelatedWork W2185993203 @default.
- W3087314568 hasRelatedWork W2508457823 @default.
- W3087314568 isParatext "false" @default.
- W3087314568 isRetracted "false" @default.
- W3087314568 magId "3087314568" @default.
- W3087314568 workType "article" @default.