Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087333752> ?p ?o ?g. }
- W3087333752 endingPage "114031" @default.
- W3087333752 startingPage "114031" @default.
- W3087333752 abstract "Analysis and classification of extensive medical data (e.g. electroencephalography (EEG) signals) is a significant challenge to develop effective brain–computer interface (BCI) system. Therefore, it is necessary to build automated classification framework to decode different brain signals. In the present study, two-step filtering approach is utilize to achieve resilience towards cognitive and external noises. Then, empirical wavelet transform (EWT) and four data reduction techniques; principal component analysis (PCA), independent component analysis (ICA), linear discriminant analysis (LDA) and neighborhood component analysis (NCA) are first time integrated together to explore dynamic nature and pattern mining of motor imagery (MI) EEG signals. Specifically, EWT helped to explore the hidden patterns of MI tasks by decomposing EEG data into different modes where every mode was consider as a feature vector in this study and each data reduction technique have been applied to all these modes to reduce the dimension of huge feature matrix. Moreover, an automated correlation-based components/coefficients selection criteria and parameter tuning were implemented for PCA, ICA, LDA, and NCA respectively. For the comparison purposes, all the experiments were performed on two publicly available datasets (BCI competition III dataset IVa and IVb). The performance of the experiments was verified by decoding three different channel combination strategies along with several neural networks. The regularization parameter tuning of NCA guaranteed to improve classification performance with significant features for each subject. The experimental results revealed that NCA provides an average sensitivity, specificity, accuracy, precision, F1 score and kappa-coefficient of 100% for subject dependent case whereas 93%, 93%, 92.9%, 93%, 96.4% and 90% for subject independent case respectively. All the results were obtained with artificial neural networks, cascade-forward neural networks and multilayer perceptron neural networks (MLP) for subject dependent case while with MLP for subject independent case by utilizing 7 channels out of total 118. Such an increase in results can alleviate users to explain more clearly their MI activities. For instance, physically impaired person will be able to manage their wheelchair quite effectively, and rehabilitated persons may be able to improve their activities." @default.
- W3087333752 created "2020-09-25" @default.
- W3087333752 creator A5030669040 @default.
- W3087333752 creator A5032840064 @default.
- W3087333752 creator A5050301709 @default.
- W3087333752 date "2021-02-01" @default.
- W3087333752 modified "2023-10-11" @default.
- W3087333752 title "Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces" @default.
- W3087333752 cites W1878565453 @default.
- W3087333752 cites W1964168965 @default.
- W3087333752 cites W1969400054 @default.
- W3087333752 cites W1975717934 @default.
- W3087333752 cites W1987551624 @default.
- W3087333752 cites W1994837583 @default.
- W3087333752 cites W1996167318 @default.
- W3087333752 cites W2003646190 @default.
- W3087333752 cites W2005791255 @default.
- W3087333752 cites W2011484846 @default.
- W3087333752 cites W2019900743 @default.
- W3087333752 cites W2021970732 @default.
- W3087333752 cites W2024633000 @default.
- W3087333752 cites W2028124740 @default.
- W3087333752 cites W2047170442 @default.
- W3087333752 cites W2054764914 @default.
- W3087333752 cites W2055070433 @default.
- W3087333752 cites W2059231157 @default.
- W3087333752 cites W2060472216 @default.
- W3087333752 cites W2063923412 @default.
- W3087333752 cites W2081700482 @default.
- W3087333752 cites W2083090531 @default.
- W3087333752 cites W2088812805 @default.
- W3087333752 cites W2090158744 @default.
- W3087333752 cites W2093296486 @default.
- W3087333752 cites W2101629643 @default.
- W3087333752 cites W2109858853 @default.
- W3087333752 cites W2115126565 @default.
- W3087333752 cites W2122111042 @default.
- W3087333752 cites W2124311300 @default.
- W3087333752 cites W2127769318 @default.
- W3087333752 cites W2129023315 @default.
- W3087333752 cites W2155617375 @default.
- W3087333752 cites W2158397443 @default.
- W3087333752 cites W2160634130 @default.
- W3087333752 cites W2256611813 @default.
- W3087333752 cites W2289208053 @default.
- W3087333752 cites W2330219538 @default.
- W3087333752 cites W2338065876 @default.
- W3087333752 cites W2347201682 @default.
- W3087333752 cites W2517825796 @default.
- W3087333752 cites W2521878393 @default.
- W3087333752 cites W2588135761 @default.
- W3087333752 cites W2607062738 @default.
- W3087333752 cites W2766733807 @default.
- W3087333752 cites W2792724009 @default.
- W3087333752 cites W2802723950 @default.
- W3087333752 cites W2808098316 @default.
- W3087333752 cites W2810314999 @default.
- W3087333752 cites W2899671259 @default.
- W3087333752 cites W2915196348 @default.
- W3087333752 cites W2945692081 @default.
- W3087333752 cites W2951453195 @default.
- W3087333752 cites W2971357197 @default.
- W3087333752 cites W2990331389 @default.
- W3087333752 cites W2998852862 @default.
- W3087333752 cites W3035770885 @default.
- W3087333752 doi "https://doi.org/10.1016/j.eswa.2020.114031" @default.
- W3087333752 hasPublicationYear "2021" @default.
- W3087333752 type Work @default.
- W3087333752 sameAs 3087333752 @default.
- W3087333752 citedByCount "66" @default.
- W3087333752 countsByYear W30873337522020 @default.
- W3087333752 countsByYear W30873337522021 @default.
- W3087333752 countsByYear W30873337522022 @default.
- W3087333752 countsByYear W30873337522023 @default.
- W3087333752 crossrefType "journal-article" @default.
- W3087333752 hasAuthorship W3087333752A5030669040 @default.
- W3087333752 hasAuthorship W3087333752A5032840064 @default.
- W3087333752 hasAuthorship W3087333752A5050301709 @default.
- W3087333752 hasConcept C118552586 @default.
- W3087333752 hasConcept C124101348 @default.
- W3087333752 hasConcept C148483581 @default.
- W3087333752 hasConcept C153180895 @default.
- W3087333752 hasConcept C154945302 @default.
- W3087333752 hasConcept C15744967 @default.
- W3087333752 hasConcept C173201364 @default.
- W3087333752 hasConcept C27438332 @default.
- W3087333752 hasConcept C41008148 @default.
- W3087333752 hasConcept C51432778 @default.
- W3087333752 hasConcept C522805319 @default.
- W3087333752 hasConcept C54808283 @default.
- W3087333752 hasConcept C69738355 @default.
- W3087333752 hasConcept C70518039 @default.
- W3087333752 hasConceptScore W3087333752C118552586 @default.
- W3087333752 hasConceptScore W3087333752C124101348 @default.
- W3087333752 hasConceptScore W3087333752C148483581 @default.
- W3087333752 hasConceptScore W3087333752C153180895 @default.
- W3087333752 hasConceptScore W3087333752C154945302 @default.
- W3087333752 hasConceptScore W3087333752C15744967 @default.