Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087355280> ?p ?o ?g. }
- W3087355280 endingPage "806" @default.
- W3087355280 startingPage "796" @default.
- W3087355280 abstract "N6-methyladenine (m6A), a type of modification mostly affecting the downstream biological functions and determining the levels of gene expression, is mediated by the methylation of adenine in nucleic acids. It is also a key factor for influencing biological processes and has attracted attention as a target for treating diseases. Here, an ensemble predictor named as TL-Methy, was developed to identify m6A sites across the genome. TL-Methy is a 2-level machine learning method developed by combining the support vector machine model and multiple features extraction methods, including nucleic acid composition, di-nucleotide composition, tri-nucleotide composition, position-specific trinucleotide propensity, Bi-profile Bayes, binary encoding, and accumulated nucleotide frequency. For Homo sapiens, TL-Methy method reached the accuracy of 91.68% on jackknife test and of 92.23% on 10-fold cross validation test; For Mus musculus, TL-Methy method achieved the accuracy of 93.66% on jackknife test and of 97.07% on 10-fold cross validation test; For Saccharomyces cerevisiae, TL-Methy method obtained the accuracy of 81.57% on jackknife test and of 82.54% on 10-fold cross validation test; For rice genome, TL-Methy method achieved the accuracy of 91.87% on jackknife test and of 93.04% on 10-fold cross validation test. The results via these two test approaches demonstrated the robustness and practicality of our TL-Methy model. The TL-Methy model may be as a potential method for m6A site identification.Communicated by Ramaswamy H. Sarma." @default.
- W3087355280 created "2020-09-25" @default.
- W3087355280 creator A5066223731 @default.
- W3087355280 creator A5084678300 @default.
- W3087355280 date "2020-09-18" @default.
- W3087355280 modified "2023-09-24" @default.
- W3087355280 title "Using Chou’s 5-steps rule to identify N<sup>6</sup>-methyladenine sites by ensemble learning combined with multiple feature extraction methods" @default.
- W3087355280 cites W1186776093 @default.
- W3087355280 cites W1494484168 @default.
- W3087355280 cites W1539000680 @default.
- W3087355280 cites W1943237984 @default.
- W3087355280 cites W1975341909 @default.
- W3087355280 cites W1981091069 @default.
- W3087355280 cites W2004132756 @default.
- W3087355280 cites W2008343108 @default.
- W3087355280 cites W2018235493 @default.
- W3087355280 cites W2022965734 @default.
- W3087355280 cites W2034070267 @default.
- W3087355280 cites W2038681300 @default.
- W3087355280 cites W2040485185 @default.
- W3087355280 cites W2048356293 @default.
- W3087355280 cites W2049023560 @default.
- W3087355280 cites W2056092504 @default.
- W3087355280 cites W2062821957 @default.
- W3087355280 cites W2067305692 @default.
- W3087355280 cites W2070261501 @default.
- W3087355280 cites W2075160563 @default.
- W3087355280 cites W2091235283 @default.
- W3087355280 cites W2098432967 @default.
- W3087355280 cites W2102354653 @default.
- W3087355280 cites W2102589447 @default.
- W3087355280 cites W2109268993 @default.
- W3087355280 cites W2120026469 @default.
- W3087355280 cites W2126165721 @default.
- W3087355280 cites W2153635508 @default.
- W3087355280 cites W2160257187 @default.
- W3087355280 cites W2164052908 @default.
- W3087355280 cites W2169840601 @default.
- W3087355280 cites W2180404227 @default.
- W3087355280 cites W2201760124 @default.
- W3087355280 cites W2205505631 @default.
- W3087355280 cites W2292706259 @default.
- W3087355280 cites W2302101231 @default.
- W3087355280 cites W2315928616 @default.
- W3087355280 cites W2403390037 @default.
- W3087355280 cites W2509465044 @default.
- W3087355280 cites W2514430732 @default.
- W3087355280 cites W2559209493 @default.
- W3087355280 cites W2588467130 @default.
- W3087355280 cites W2608035254 @default.
- W3087355280 cites W2616848081 @default.
- W3087355280 cites W2618733533 @default.
- W3087355280 cites W2737592062 @default.
- W3087355280 cites W2754289562 @default.
- W3087355280 cites W2762890495 @default.
- W3087355280 cites W2783279948 @default.
- W3087355280 cites W2790194840 @default.
- W3087355280 cites W2791349417 @default.
- W3087355280 cites W2791600746 @default.
- W3087355280 cites W2791790309 @default.
- W3087355280 cites W2792461449 @default.
- W3087355280 cites W2800245053 @default.
- W3087355280 cites W2802078840 @default.
- W3087355280 cites W2804672687 @default.
- W3087355280 cites W2805110914 @default.
- W3087355280 cites W2805826733 @default.
- W3087355280 cites W2813360597 @default.
- W3087355280 cites W2883534252 @default.
- W3087355280 cites W2889994884 @default.
- W3087355280 cites W2893677905 @default.
- W3087355280 cites W2896636431 @default.
- W3087355280 cites W2906046752 @default.
- W3087355280 cites W2909240409 @default.
- W3087355280 cites W2910591656 @default.
- W3087355280 cites W2914995837 @default.
- W3087355280 cites W2919339992 @default.
- W3087355280 cites W2921018335 @default.
- W3087355280 cites W2924590478 @default.
- W3087355280 cites W2940438782 @default.
- W3087355280 cites W2940473304 @default.
- W3087355280 cites W2942683196 @default.
- W3087355280 cites W2955151077 @default.
- W3087355280 cites W2961187895 @default.
- W3087355280 cites W2964874436 @default.
- W3087355280 cites W2967387109 @default.
- W3087355280 cites W2967960129 @default.
- W3087355280 cites W2971305747 @default.
- W3087355280 cites W3012398457 @default.
- W3087355280 cites W3014617599 @default.
- W3087355280 doi "https://doi.org/10.1080/07391102.2020.1821778" @default.
- W3087355280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32948102" @default.
- W3087355280 hasPublicationYear "2020" @default.
- W3087355280 type Work @default.
- W3087355280 sameAs 3087355280 @default.
- W3087355280 citedByCount "3" @default.
- W3087355280 countsByYear W30873552802021 @default.
- W3087355280 countsByYear W30873552802022 @default.
- W3087355280 countsByYear W30873552802023 @default.