Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087367966> ?p ?o ?g. }
- W3087367966 abstract "Let $G$ be a compact connected Lie group and $ngeqslant 1$ an integer. Consider the space of ordered commuting $n$-tuples in $G$, $Hom(mathbb{Z}^n,G)$, and its quotient under the adjoint action, $Rep(mathbb{Z}^n,G):=Hom(mathbb{Z}^n,G)/G$. In this article we study and in many cases compute the homotopy groups $pi_2(Hom(mathbb{Z}^n,G))$. For $G$ simply--connected and simple we show that $pi_2(Hom(mathbb{Z}^2,G))cong mathbb{Z}$ and $pi_2(Rep(mathbb{Z}^2,G))cong mathbb{Z}$, and that on these groups the quotient map $Hom(mathbb{Z}^2,G)to Rep(mathbb{Z}^2,G)$ induces multiplication by the Dynkin index of $G$. More generally we show that if $G$ is simple and $Hom(mathbb{Z}^2,G)_{1}subseteq Hom(mathbb{Z}^2,G)$ is the path--component of the trivial homomorphism, then $H_2(Hom(mathbb{Z}^2,G)_{1};mathbb{Z})$ is an extension of the Schur multiplier of $pi_1(G)^2$ by $mathbb{Z}$. We apply our computations to prove that if $B_{com}G_{1}$ is the classifying space for commutativity at the identity component, then $pi_4(B_{com}G_{1})cong mathbb{Z}oplus mathbb{Z}$, and we construct examples of non-trivial transitionally commutative structures on the trivial principal $G$-bundle over the sphere $mathbb{S}^{4}$." @default.
- W3087367966 created "2020-09-25" @default.
- W3087367966 creator A5013451091 @default.
- W3087367966 creator A5027944971 @default.
- W3087367966 creator A5070917708 @default.
- W3087367966 date "2020-09-18" @default.
- W3087367966 modified "2023-09-23" @default.
- W3087367966 title "On the second homotopy group of spaces of commuting elements in Lie groups" @default.
- W3087367966 cites W1521877949 @default.
- W3087367966 cites W1539838732 @default.
- W3087367966 cites W1584901588 @default.
- W3087367966 cites W1597292016 @default.
- W3087367966 cites W1748227300 @default.
- W3087367966 cites W1892659804 @default.
- W3087367966 cites W1972887839 @default.
- W3087367966 cites W1976694540 @default.
- W3087367966 cites W1977893935 @default.
- W3087367966 cites W1978444638 @default.
- W3087367966 cites W1986061087 @default.
- W3087367966 cites W1988994616 @default.
- W3087367966 cites W1993129939 @default.
- W3087367966 cites W2014750094 @default.
- W3087367966 cites W2030221275 @default.
- W3087367966 cites W2035794986 @default.
- W3087367966 cites W2037733548 @default.
- W3087367966 cites W2038765585 @default.
- W3087367966 cites W2043445128 @default.
- W3087367966 cites W2050248814 @default.
- W3087367966 cites W2052495071 @default.
- W3087367966 cites W2052550771 @default.
- W3087367966 cites W2059558316 @default.
- W3087367966 cites W2071315267 @default.
- W3087367966 cites W2081866313 @default.
- W3087367966 cites W2101956700 @default.
- W3087367966 cites W2115599842 @default.
- W3087367966 cites W2130762722 @default.
- W3087367966 cites W2228372736 @default.
- W3087367966 cites W2319346282 @default.
- W3087367966 cites W2789252351 @default.
- W3087367966 cites W2904975623 @default.
- W3087367966 cites W2964034213 @default.
- W3087367966 cites W2964196393 @default.
- W3087367966 cites W2969651692 @default.
- W3087367966 cites W3082622885 @default.
- W3087367966 cites W3098975395 @default.
- W3087367966 cites W3099002894 @default.
- W3087367966 cites W3099772013 @default.
- W3087367966 cites W3099975892 @default.
- W3087367966 cites W3103349726 @default.
- W3087367966 cites W3104767966 @default.
- W3087367966 cites W3106317323 @default.
- W3087367966 cites W3174989280 @default.
- W3087367966 cites W641742619 @default.
- W3087367966 hasPublicationYear "2020" @default.
- W3087367966 type Work @default.
- W3087367966 sameAs 3087367966 @default.
- W3087367966 citedByCount "1" @default.
- W3087367966 countsByYear W30873679662021 @default.
- W3087367966 crossrefType "posted-content" @default.
- W3087367966 hasAuthorship W3087367966A5013451091 @default.
- W3087367966 hasAuthorship W3087367966A5027944971 @default.
- W3087367966 hasAuthorship W3087367966A5070917708 @default.
- W3087367966 hasConcept C114614502 @default.
- W3087367966 hasConcept C118615104 @default.
- W3087367966 hasConcept C121332964 @default.
- W3087367966 hasConcept C147688034 @default.
- W3087367966 hasConcept C183778304 @default.
- W3087367966 hasConcept C199360897 @default.
- W3087367966 hasConcept C199422724 @default.
- W3087367966 hasConcept C202444582 @default.
- W3087367966 hasConcept C2781311116 @default.
- W3087367966 hasConcept C33923547 @default.
- W3087367966 hasConcept C41008148 @default.
- W3087367966 hasConcept C5961521 @default.
- W3087367966 hasConcept C62520636 @default.
- W3087367966 hasConcept C97137487 @default.
- W3087367966 hasConceptScore W3087367966C114614502 @default.
- W3087367966 hasConceptScore W3087367966C118615104 @default.
- W3087367966 hasConceptScore W3087367966C121332964 @default.
- W3087367966 hasConceptScore W3087367966C147688034 @default.
- W3087367966 hasConceptScore W3087367966C183778304 @default.
- W3087367966 hasConceptScore W3087367966C199360897 @default.
- W3087367966 hasConceptScore W3087367966C199422724 @default.
- W3087367966 hasConceptScore W3087367966C202444582 @default.
- W3087367966 hasConceptScore W3087367966C2781311116 @default.
- W3087367966 hasConceptScore W3087367966C33923547 @default.
- W3087367966 hasConceptScore W3087367966C41008148 @default.
- W3087367966 hasConceptScore W3087367966C5961521 @default.
- W3087367966 hasConceptScore W3087367966C62520636 @default.
- W3087367966 hasConceptScore W3087367966C97137487 @default.
- W3087367966 hasOpenAccess W3087367966 @default.
- W3087367966 hasRelatedWork W1600465496 @default.
- W3087367966 hasRelatedWork W2008122887 @default.
- W3087367966 hasRelatedWork W2031326099 @default.
- W3087367966 hasRelatedWork W2052495400 @default.
- W3087367966 hasRelatedWork W2058640112 @default.
- W3087367966 hasRelatedWork W2072310470 @default.
- W3087367966 hasRelatedWork W2077116984 @default.
- W3087367966 hasRelatedWork W2090003979 @default.
- W3087367966 hasRelatedWork W2333650650 @default.