Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087388542> ?p ?o ?g. }
- W3087388542 abstract "Temperate phages can associate with their bacterial host to form a lysogen, often modifying the phenotype of the host. Lysogens are dominant in the microbially dense environment of the mammalian gut. This observation contrasts with the long-standing hypothesis of lysogeny being favored at low microbial densities, such as in oligotrophic marine environments. Here, we hypothesized that phage coinfections-a well-understood molecular mechanism of lysogenization-increase at high microbial abundances. To test this hypothesis, we developed a biophysical model of coinfection for marine and gut microbiomes. The model stochastically sampled ranges of phage and bacterial concentrations, adsorption rates, lysogenic commitment times, and community diversity from each environment. In 90% of the sampled marine communities, less than 10% of the bacteria were predicted to be lysogenized via coinfection. In contrast, 25% of the sampled gut communities displayed more than 25% of lysogenization. The probability of lysogenization in the gut was a consequence of the higher densities and higher adsorption rates. These results suggest that, on average, coinfections can form two trillion lysogens in the human gut every day. In marine microbiomes, which were characterized by lower densities and phage adsorption rates, lysogeny via coinfection was still possible for communities with long lysogenic commitment times. Our study indicates that different physical factors causing coinfections can reconcile the traditional view of lysogeny at poor host growth (long commitment times) and the recent Piggyback-the-Winner framework proposing that lysogeny is favored in rich environments (high densities and adsorption rates).IMPORTANCE The association of temperate phages and bacterial hosts during lysogeny manipulates microbial dynamics from the oceans to the human gut. Lysogeny is well studied in laboratory models, but its environmental drivers remain unclear. Here, we quantified the probability of lysogenization caused by phage coinfections, a well-known trigger of lysogeny, in marine and gut microbial environments. Coinfections were quantified by developing a biophysical model that incorporated the traits of viral and bacterial communities. Lysogenization via coinfection was more frequent in highly productive environments like the gut, due to higher microbial densities and higher phage adsorption rates. At low cell densities, lysogenization occurred in bacteria with long duplication times. These results bridge the molecular understanding of lysogeny with the ecology of complex microbial communities." @default.
- W3087388542 created "2020-09-25" @default.
- W3087388542 creator A5005588845 @default.
- W3087388542 creator A5086012925 @default.
- W3087388542 date "2020-10-27" @default.
- W3087388542 modified "2023-10-16" @default.
- W3087388542 title "Quantification of Lysogeny Caused by Phage Coinfections in Microbial Communities from Biophysical Principles" @default.
- W3087388542 cites W1573209294 @default.
- W3087388542 cites W1678054156 @default.
- W3087388542 cites W1775763515 @default.
- W3087388542 cites W1921607560 @default.
- W3087388542 cites W1989021204 @default.
- W3087388542 cites W1990118801 @default.
- W3087388542 cites W1990879843 @default.
- W3087388542 cites W2003284627 @default.
- W3087388542 cites W2008733625 @default.
- W3087388542 cites W2023623088 @default.
- W3087388542 cites W2023652460 @default.
- W3087388542 cites W2027489166 @default.
- W3087388542 cites W2029810749 @default.
- W3087388542 cites W2036892234 @default.
- W3087388542 cites W2041307009 @default.
- W3087388542 cites W2044739380 @default.
- W3087388542 cites W2047308649 @default.
- W3087388542 cites W2048122831 @default.
- W3087388542 cites W2051838613 @default.
- W3087388542 cites W2060573699 @default.
- W3087388542 cites W2066056230 @default.
- W3087388542 cites W2074782921 @default.
- W3087388542 cites W2078823298 @default.
- W3087388542 cites W2080973820 @default.
- W3087388542 cites W2087276924 @default.
- W3087388542 cites W2093533123 @default.
- W3087388542 cites W2097146199 @default.
- W3087388542 cites W2107079751 @default.
- W3087388542 cites W2123016662 @default.
- W3087388542 cites W2124927293 @default.
- W3087388542 cites W2126572569 @default.
- W3087388542 cites W2142136902 @default.
- W3087388542 cites W2144241990 @default.
- W3087388542 cites W2155002981 @default.
- W3087388542 cites W2158406706 @default.
- W3087388542 cites W2161251845 @default.
- W3087388542 cites W2162314899 @default.
- W3087388542 cites W2167752698 @default.
- W3087388542 cites W2168167613 @default.
- W3087388542 cites W2174616248 @default.
- W3087388542 cites W2178459747 @default.
- W3087388542 cites W2194638760 @default.
- W3087388542 cites W2245444176 @default.
- W3087388542 cites W2300639547 @default.
- W3087388542 cites W2306404099 @default.
- W3087388542 cites W2316663906 @default.
- W3087388542 cites W2320294474 @default.
- W3087388542 cites W2342508939 @default.
- W3087388542 cites W2346113217 @default.
- W3087388542 cites W2417593230 @default.
- W3087388542 cites W2468409351 @default.
- W3087388542 cites W2475445019 @default.
- W3087388542 cites W2492833358 @default.
- W3087388542 cites W2523201192 @default.
- W3087388542 cites W2579294549 @default.
- W3087388542 cites W2586943721 @default.
- W3087388542 cites W2588299914 @default.
- W3087388542 cites W2594708657 @default.
- W3087388542 cites W2602855059 @default.
- W3087388542 cites W2607765444 @default.
- W3087388542 cites W2609324361 @default.
- W3087388542 cites W2609740111 @default.
- W3087388542 cites W2621584258 @default.
- W3087388542 cites W2768011531 @default.
- W3087388542 cites W2769166250 @default.
- W3087388542 cites W2776888625 @default.
- W3087388542 cites W2790367768 @default.
- W3087388542 cites W2793203924 @default.
- W3087388542 cites W2800174467 @default.
- W3087388542 cites W2804856473 @default.
- W3087388542 cites W2891938340 @default.
- W3087388542 cites W2913714888 @default.
- W3087388542 cites W2913972921 @default.
- W3087388542 cites W2940459311 @default.
- W3087388542 cites W2948481420 @default.
- W3087388542 cites W2956144862 @default.
- W3087388542 cites W2966690030 @default.
- W3087388542 cites W2982446590 @default.
- W3087388542 cites W2983713820 @default.
- W3087388542 cites W2984807281 @default.
- W3087388542 cites W3005872316 @default.
- W3087388542 cites W3006143003 @default.
- W3087388542 cites W3008405029 @default.
- W3087388542 cites W3011647049 @default.
- W3087388542 cites W3015369813 @default.
- W3087388542 cites W3016126805 @default.
- W3087388542 cites W3024895917 @default.
- W3087388542 cites W4243645092 @default.
- W3087388542 cites W4294362703 @default.
- W3087388542 cites W86041602 @default.
- W3087388542 doi "https://doi.org/10.1128/msystems.00353-20" @default.
- W3087388542 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7498681" @default.
- W3087388542 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32934113" @default.