Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087402912> ?p ?o ?g. }
- W3087402912 abstract "In this dissertation, memristor-based spiking neural networks (SNNs) are used to analyze the effect of radiation on the spatio-temporal pattern recognition (STPR) capability of the networks. Two-terminal resistive memory devices (memristors) are used as synapses to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern learning and is achieved using biphasic shaped pre- and post-synaptic spikes. A TiO<sub>2</sub> based non-linear drift memristor model designed in Verilog-A implements synaptic behavior and is modified to include experimentally observed effects of state-altering, ionizing, and off-state degradation radiation on the device. The impact of neuron death (disabled neuron circuits) due to radiation is also examined. In general, radiation interaction events distort the STDP learning curve undesirably, favoring synaptic potentiation. At lower short-term flux, the network is able to recover and relearn the pattern with consistent training, although some pixels may be affected due to stability issues. As the radiation flux and duration increases, it can overwhelm the leaky integrate-and-fire (LIF) post-synaptic neuron circuit, and the network does not learn the pattern. On the other hand, in the absence of the pattern, the radiation effects cumulate, and the system never regains stability. Neuron-death simulation results emphasize the importance of non-participating neurons during the learning process, concluding that non-participating afferents contribute to improving the learning ability of the neural network. Instantaneous neuron death proves to be more detrimental for the network compared to when the afferents die over time thus, retaining the network's pattern learning capability." @default.
- W3087402912 created "2020-09-25" @default.
- W3087402912 creator A5061514879 @default.
- W3087402912 date "2020-09-23" @default.
- W3087402912 modified "2023-09-25" @default.
- W3087402912 title "The Effects of Radiation on Memristor-Based Electronic Spiking Neural Networks" @default.
- W3087402912 cites W1489333352 @default.
- W3087402912 cites W1500829088 @default.
- W3087402912 cites W1623570065 @default.
- W3087402912 cites W182017698 @default.
- W3087402912 cites W1833852352 @default.
- W3087402912 cites W1888324566 @default.
- W3087402912 cites W1969425954 @default.
- W3087402912 cites W1970974872 @default.
- W3087402912 cites W1974959416 @default.
- W3087402912 cites W1975398991 @default.
- W3087402912 cites W1981080265 @default.
- W3087402912 cites W1983364832 @default.
- W3087402912 cites W1985868795 @default.
- W3087402912 cites W1987759131 @default.
- W3087402912 cites W1990752558 @default.
- W3087402912 cites W1996579405 @default.
- W3087402912 cites W2007898123 @default.
- W3087402912 cites W2008901850 @default.
- W3087402912 cites W2012543994 @default.
- W3087402912 cites W2014359364 @default.
- W3087402912 cites W2016922062 @default.
- W3087402912 cites W2017797327 @default.
- W3087402912 cites W2018577927 @default.
- W3087402912 cites W2018645548 @default.
- W3087402912 cites W2018774711 @default.
- W3087402912 cites W2023831571 @default.
- W3087402912 cites W2026913344 @default.
- W3087402912 cites W2028166238 @default.
- W3087402912 cites W2030834420 @default.
- W3087402912 cites W2032832574 @default.
- W3087402912 cites W2035054741 @default.
- W3087402912 cites W2037925763 @default.
- W3087402912 cites W2040045500 @default.
- W3087402912 cites W2042862454 @default.
- W3087402912 cites W2043707274 @default.
- W3087402912 cites W2044406766 @default.
- W3087402912 cites W2045614943 @default.
- W3087402912 cites W2048500784 @default.
- W3087402912 cites W2055369198 @default.
- W3087402912 cites W2063239708 @default.
- W3087402912 cites W2063966202 @default.
- W3087402912 cites W2067709814 @default.
- W3087402912 cites W2068469823 @default.
- W3087402912 cites W2069612046 @default.
- W3087402912 cites W2070866516 @default.
- W3087402912 cites W2074937504 @default.
- W3087402912 cites W2076310721 @default.
- W3087402912 cites W2079739840 @default.
- W3087402912 cites W2080538149 @default.
- W3087402912 cites W2080625874 @default.
- W3087402912 cites W2084914578 @default.
- W3087402912 cites W2087923338 @default.
- W3087402912 cites W2089597903 @default.
- W3087402912 cites W2090737712 @default.
- W3087402912 cites W2095348819 @default.
- W3087402912 cites W2096647267 @default.
- W3087402912 cites W2099004263 @default.
- W3087402912 cites W2103902557 @default.
- W3087402912 cites W2104281862 @default.
- W3087402912 cites W2110697514 @default.
- W3087402912 cites W2113017564 @default.
- W3087402912 cites W2113899638 @default.
- W3087402912 cites W2114639336 @default.
- W3087402912 cites W2114665523 @default.
- W3087402912 cites W2116570850 @default.
- W3087402912 cites W2117671523 @default.
- W3087402912 cites W2119247813 @default.
- W3087402912 cites W2126651459 @default.
- W3087402912 cites W2129871911 @default.
- W3087402912 cites W2133096040 @default.
- W3087402912 cites W2133097886 @default.
- W3087402912 cites W2144275451 @default.
- W3087402912 cites W2145967274 @default.
- W3087402912 cites W2147101007 @default.
- W3087402912 cites W2147800946 @default.
- W3087402912 cites W2149304186 @default.
- W3087402912 cites W2154691889 @default.
- W3087402912 cites W2157729981 @default.
- W3087402912 cites W2159731583 @default.
- W3087402912 cites W2160815625 @default.
- W3087402912 cites W2161330443 @default.
- W3087402912 cites W2162651880 @default.
- W3087402912 cites W2163884613 @default.
- W3087402912 cites W2166678402 @default.
- W3087402912 cites W2225701763 @default.
- W3087402912 cites W2313113808 @default.
- W3087402912 cites W2342840547 @default.
- W3087402912 cites W2342915937 @default.
- W3087402912 cites W2462134012 @default.
- W3087402912 cites W2494172911 @default.
- W3087402912 cites W2509653747 @default.
- W3087402912 cites W2510112518 @default.
- W3087402912 cites W2536340683 @default.
- W3087402912 cites W2547988012 @default.