Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087431152> ?p ?o ?g. }
- W3087431152 endingPage "17" @default.
- W3087431152 startingPage "1" @default.
- W3087431152 abstract "Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education using LMS activity data did not adequately accommodate student behaviours in the form of time series. In this study, we have applied a deep learning approach — long short-term memory (LSTM) networks — to analyze student online temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series information about click frequencies successfully provided early detection of at-risk students with moderate prediction accuracy. In addition, the deep learning approach showed higher prediction performance and stronger generalizability than the machine learning classifiers." @default.
- W3087431152 created "2020-09-25" @default.
- W3087431152 creator A5036460369 @default.
- W3087431152 creator A5038001663 @default.
- W3087431152 date "2020-09-19" @default.
- W3087431152 modified "2023-10-13" @default.
- W3087431152 title "Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance" @default.
- W3087431152 cites W1485955713 @default.
- W3087431152 cites W1516735453 @default.
- W3087431152 cites W1600436876 @default.
- W3087431152 cites W1831050183 @default.
- W3087431152 cites W1832217497 @default.
- W3087431152 cites W1914441153 @default.
- W3087431152 cites W193988059 @default.
- W3087431152 cites W1964502429 @default.
- W3087431152 cites W1978503757 @default.
- W3087431152 cites W1980276147 @default.
- W3087431152 cites W2064675550 @default.
- W3087431152 cites W2071097428 @default.
- W3087431152 cites W2086145942 @default.
- W3087431152 cites W2097998348 @default.
- W3087431152 cites W2101927907 @default.
- W3087431152 cites W2103672843 @default.
- W3087431152 cites W2107878631 @default.
- W3087431152 cites W2148143831 @default.
- W3087431152 cites W2167101736 @default.
- W3087431152 cites W2255539840 @default.
- W3087431152 cites W2296356056 @default.
- W3087431152 cites W2461343855 @default.
- W3087431152 cites W2466195189 @default.
- W3087431152 cites W2531767846 @default.
- W3087431152 cites W2555301655 @default.
- W3087431152 cites W2557283755 @default.
- W3087431152 cites W2582001816 @default.
- W3087431152 cites W2592949236 @default.
- W3087431152 cites W2735315095 @default.
- W3087431152 cites W2767273487 @default.
- W3087431152 cites W2774962762 @default.
- W3087431152 cites W2791327891 @default.
- W3087431152 cites W2794917271 @default.
- W3087431152 cites W2796525485 @default.
- W3087431152 cites W2796638028 @default.
- W3087431152 cites W2796696901 @default.
- W3087431152 cites W2796942848 @default.
- W3087431152 cites W2797911300 @default.
- W3087431152 cites W2799194347 @default.
- W3087431152 cites W2809165304 @default.
- W3087431152 cites W2809416245 @default.
- W3087431152 cites W2903025091 @default.
- W3087431152 cites W2948268267 @default.
- W3087431152 cites W2963266340 @default.
- W3087431152 cites W2985962305 @default.
- W3087431152 cites W3100211802 @default.
- W3087431152 cites W952968460 @default.
- W3087431152 cites W3023071679 @default.
- W3087431152 doi "https://doi.org/10.18608/jla.2020.72.1" @default.
- W3087431152 hasPublicationYear "2020" @default.
- W3087431152 type Work @default.
- W3087431152 sameAs 3087431152 @default.
- W3087431152 citedByCount "33" @default.
- W3087431152 countsByYear W30874311522020 @default.
- W3087431152 countsByYear W30874311522021 @default.
- W3087431152 countsByYear W30874311522022 @default.
- W3087431152 countsByYear W30874311522023 @default.
- W3087431152 crossrefType "journal-article" @default.
- W3087431152 hasAuthorship W3087431152A5036460369 @default.
- W3087431152 hasAuthorship W3087431152A5038001663 @default.
- W3087431152 hasBestOaLocation W30874311521 @default.
- W3087431152 hasConcept C119857082 @default.
- W3087431152 hasConcept C127413603 @default.
- W3087431152 hasConcept C143724316 @default.
- W3087431152 hasConcept C145420912 @default.
- W3087431152 hasConcept C146978453 @default.
- W3087431152 hasConcept C151406439 @default.
- W3087431152 hasConcept C151730666 @default.
- W3087431152 hasConcept C15744967 @default.
- W3087431152 hasConcept C2522767166 @default.
- W3087431152 hasConcept C2777552389 @default.
- W3087431152 hasConcept C2777648619 @default.
- W3087431152 hasConcept C2779114481 @default.
- W3087431152 hasConcept C41008148 @default.
- W3087431152 hasConcept C49774154 @default.
- W3087431152 hasConcept C86803240 @default.
- W3087431152 hasConceptScore W3087431152C119857082 @default.
- W3087431152 hasConceptScore W3087431152C127413603 @default.
- W3087431152 hasConceptScore W3087431152C143724316 @default.
- W3087431152 hasConceptScore W3087431152C145420912 @default.
- W3087431152 hasConceptScore W3087431152C146978453 @default.
- W3087431152 hasConceptScore W3087431152C151406439 @default.
- W3087431152 hasConceptScore W3087431152C151730666 @default.
- W3087431152 hasConceptScore W3087431152C15744967 @default.
- W3087431152 hasConceptScore W3087431152C2522767166 @default.
- W3087431152 hasConceptScore W3087431152C2777552389 @default.
- W3087431152 hasConceptScore W3087431152C2777648619 @default.
- W3087431152 hasConceptScore W3087431152C2779114481 @default.
- W3087431152 hasConceptScore W3087431152C41008148 @default.
- W3087431152 hasConceptScore W3087431152C49774154 @default.
- W3087431152 hasConceptScore W3087431152C86803240 @default.