Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087478415> ?p ?o ?g. }
- W3087478415 endingPage "332" @default.
- W3087478415 startingPage "321" @default.
- W3087478415 abstract "Brain tumors are one of the major common causes of cancer-related death, worldwide. Growth prediction of these tumors, particularly gliomas which are the most dominant type, can be quite useful to improve treatment planning, quantify tumor aggressiveness, and estimate patients’ survival time towards precision medicine. Studying tumor growth prediction basically requires multiple time points of single or multimodal medical images of the same patient. Recent models are based on complex mathematical formulations that basically rely on a system of partial differential equations, e.g. reaction diffusion model, to capture the diffusion and proliferation of tumor cells in the surrounding tissue. However, these models usually have small number of parameters that are insufficient to capture different patterns and other characteristics of the tumors. In addition, such models consider tumor growth independently for each subject, not being able to get benefit from possible common growth patterns existed in the whole population under study. In this paper, we propose a novel data-driven method via stacked 3D generative adversarial networks (GANs), named GP-GAN, for growth prediction of glioma. Specifically, we use stacked conditional GANs with a novel objective function that includes both l 1 and Dice losses. Moreover, we use segmented feature maps to guide the generator for better generated images. Our generator is designed based on a modified 3D U-Net architecture with skip connections to combine hierarchical features and thus have a better generated image. The proposed method is trained and tested on 18 subjects with 3 time points (9 subjects from collaborative hospital and 9 subjects from BRATS 2014 dataset). Results show that our proposed GP-GAN outperforms state-of-the-art methods for glioma growth prediction and attain average Jaccard index and Dice coefficient of 78.97% and 88.26%, respectively." @default.
- W3087478415 created "2020-09-25" @default.
- W3087478415 creator A5001212991 @default.
- W3087478415 creator A5011580019 @default.
- W3087478415 creator A5016060450 @default.
- W3087478415 creator A5042305251 @default.
- W3087478415 creator A5046543349 @default.
- W3087478415 creator A5058927487 @default.
- W3087478415 creator A5063406130 @default.
- W3087478415 creator A5065691097 @default.
- W3087478415 date "2020-12-01" @default.
- W3087478415 modified "2023-10-17" @default.
- W3087478415 title "GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images" @default.
- W3087478415 cites W1506496659 @default.
- W3087478415 cites W1567125309 @default.
- W3087478415 cites W1868728779 @default.
- W3087478415 cites W1871050032 @default.
- W3087478415 cites W1901129140 @default.
- W3087478415 cites W1976044727 @default.
- W3087478415 cites W1976558510 @default.
- W3087478415 cites W1976987057 @default.
- W3087478415 cites W1988987428 @default.
- W3087478415 cites W2032168148 @default.
- W3087478415 cites W2038607477 @default.
- W3087478415 cites W2044257143 @default.
- W3087478415 cites W2046098306 @default.
- W3087478415 cites W2055272161 @default.
- W3087478415 cites W2056753605 @default.
- W3087478415 cites W2099298391 @default.
- W3087478415 cites W2101608218 @default.
- W3087478415 cites W2130257210 @default.
- W3087478415 cites W2147938585 @default.
- W3087478415 cites W2160382843 @default.
- W3087478415 cites W2296457333 @default.
- W3087478415 cites W2479748558 @default.
- W3087478415 cites W2546585850 @default.
- W3087478415 cites W2562637781 @default.
- W3087478415 cites W2566832195 @default.
- W3087478415 cites W2606442854 @default.
- W3087478415 cites W2768546357 @default.
- W3087478415 cites W2789588857 @default.
- W3087478415 cites W2804161046 @default.
- W3087478415 cites W2889167864 @default.
- W3087478415 cites W2890139949 @default.
- W3087478415 cites W2904322775 @default.
- W3087478415 cites W2912884588 @default.
- W3087478415 cites W2914570111 @default.
- W3087478415 cites W2914765210 @default.
- W3087478415 cites W2919115771 @default.
- W3087478415 cites W2919520822 @default.
- W3087478415 cites W2943695642 @default.
- W3087478415 cites W2959177618 @default.
- W3087478415 cites W2962914239 @default.
- W3087478415 cites W2964130670 @default.
- W3087478415 cites W2968040751 @default.
- W3087478415 cites W3015730689 @default.
- W3087478415 cites W3016186637 @default.
- W3087478415 cites W3022072054 @default.
- W3087478415 cites W3027969476 @default.
- W3087478415 cites W3042183427 @default.
- W3087478415 cites W3102737931 @default.
- W3087478415 doi "https://doi.org/10.1016/j.neunet.2020.09.004" @default.
- W3087478415 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32977277" @default.
- W3087478415 hasPublicationYear "2020" @default.
- W3087478415 type Work @default.
- W3087478415 sameAs 3087478415 @default.
- W3087478415 citedByCount "44" @default.
- W3087478415 countsByYear W30874784152021 @default.
- W3087478415 countsByYear W30874784152022 @default.
- W3087478415 countsByYear W30874784152023 @default.
- W3087478415 crossrefType "journal-article" @default.
- W3087478415 hasAuthorship W3087478415A5001212991 @default.
- W3087478415 hasAuthorship W3087478415A5011580019 @default.
- W3087478415 hasAuthorship W3087478415A5016060450 @default.
- W3087478415 hasAuthorship W3087478415A5042305251 @default.
- W3087478415 hasAuthorship W3087478415A5046543349 @default.
- W3087478415 hasAuthorship W3087478415A5058927487 @default.
- W3087478415 hasAuthorship W3087478415A5063406130 @default.
- W3087478415 hasAuthorship W3087478415A5065691097 @default.
- W3087478415 hasConcept C115961682 @default.
- W3087478415 hasConcept C119857082 @default.
- W3087478415 hasConcept C121332964 @default.
- W3087478415 hasConcept C138885662 @default.
- W3087478415 hasConcept C153180895 @default.
- W3087478415 hasConcept C154945302 @default.
- W3087478415 hasConcept C163258240 @default.
- W3087478415 hasConcept C167966045 @default.
- W3087478415 hasConcept C2776401178 @default.
- W3087478415 hasConcept C2780992000 @default.
- W3087478415 hasConcept C2908647359 @default.
- W3087478415 hasConcept C2988773926 @default.
- W3087478415 hasConcept C39890363 @default.
- W3087478415 hasConcept C41008148 @default.
- W3087478415 hasConcept C41895202 @default.
- W3087478415 hasConcept C62520636 @default.
- W3087478415 hasConcept C71924100 @default.
- W3087478415 hasConcept C99454951 @default.
- W3087478415 hasConceptScore W3087478415C115961682 @default.