Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087509239> ?p ?o ?g. }
- W3087509239 endingPage "106353" @default.
- W3087509239 startingPage "106353" @default.
- W3087509239 abstract "The optimization of truss structures is a complex computing problem with many local minima, while metaheuristics are naturally suited to deal with multimodal problems without the need of gradient information. The Coyote Optimization Algorithm (COA) is a population-based nature-inspired metaheuristic of the swarm intelligence field for global optimization that considers the social relations of the coyote proposed to single-objective optimization. Unlike most widespread algorithms, its population is subdivided in packs and the internal social influences are designed. The COA requires a few control hyperparameters including the number of packs, the population size, and the number maximum of generations. In this paper, a modified COA (MCOA) approach based on chaotic sequences generated by Tinkerbell map to scatter and association probabilities tuning and an adaptive procedure of updating parameters related to social condition is proposed. It is then validated by four benchmark problems of structures optimization including planar 52-bar truss, spatial 72-bar truss, 120-bar dome truss and planar 200 bar-truss with discrete design variables and focus in minimization of the structure weight under the required constraints. Simulation results collected in the mentioned problems demonstrate that the proposed MCOA presented competitive solutions when compared with other state-of-the-art metaheuristic algorithms in terms of results quality." @default.
- W3087509239 created "2020-09-25" @default.
- W3087509239 creator A5006394687 @default.
- W3087509239 creator A5016889674 @default.
- W3087509239 creator A5030933589 @default.
- W3087509239 creator A5044574416 @default.
- W3087509239 creator A5057726790 @default.
- W3087509239 date "2021-01-01" @default.
- W3087509239 modified "2023-10-15" @default.
- W3087509239 title "Chaotic coyote algorithm applied to truss optimization problems" @default.
- W3087509239 cites W1815941440 @default.
- W3087509239 cites W1929236209 @default.
- W3087509239 cites W1974915966 @default.
- W3087509239 cites W1976475066 @default.
- W3087509239 cites W1980490616 @default.
- W3087509239 cites W1995821550 @default.
- W3087509239 cites W2003247700 @default.
- W3087509239 cites W2003751475 @default.
- W3087509239 cites W2007357498 @default.
- W3087509239 cites W2020243165 @default.
- W3087509239 cites W2023095371 @default.
- W3087509239 cites W2027955585 @default.
- W3087509239 cites W2035741909 @default.
- W3087509239 cites W2042140763 @default.
- W3087509239 cites W2050927287 @default.
- W3087509239 cites W2057633737 @default.
- W3087509239 cites W2061001542 @default.
- W3087509239 cites W2065731394 @default.
- W3087509239 cites W2070111669 @default.
- W3087509239 cites W2088875590 @default.
- W3087509239 cites W2091999655 @default.
- W3087509239 cites W2094444531 @default.
- W3087509239 cites W2094899595 @default.
- W3087509239 cites W2154756201 @default.
- W3087509239 cites W2155529731 @default.
- W3087509239 cites W2165206047 @default.
- W3087509239 cites W2167580870 @default.
- W3087509239 cites W2230725929 @default.
- W3087509239 cites W2305868989 @default.
- W3087509239 cites W2415986686 @default.
- W3087509239 cites W2520618604 @default.
- W3087509239 cites W2613613071 @default.
- W3087509239 cites W2762227442 @default.
- W3087509239 cites W2763907376 @default.
- W3087509239 cites W2765773968 @default.
- W3087509239 cites W2768784760 @default.
- W3087509239 cites W2897177582 @default.
- W3087509239 cites W2898620091 @default.
- W3087509239 cites W2900191532 @default.
- W3087509239 cites W2914573700 @default.
- W3087509239 cites W2931296078 @default.
- W3087509239 cites W2937869703 @default.
- W3087509239 cites W2938532773 @default.
- W3087509239 cites W2954967815 @default.
- W3087509239 cites W2969999149 @default.
- W3087509239 cites W2972333064 @default.
- W3087509239 cites W2973373886 @default.
- W3087509239 cites W2974798220 @default.
- W3087509239 cites W2985027497 @default.
- W3087509239 cites W2991490332 @default.
- W3087509239 cites W3101127658 @default.
- W3087509239 doi "https://doi.org/10.1016/j.compstruc.2020.106353" @default.
- W3087509239 hasPublicationYear "2021" @default.
- W3087509239 type Work @default.
- W3087509239 sameAs 3087509239 @default.
- W3087509239 citedByCount "56" @default.
- W3087509239 countsByYear W30875092392021 @default.
- W3087509239 countsByYear W30875092392022 @default.
- W3087509239 countsByYear W30875092392023 @default.
- W3087509239 crossrefType "journal-article" @default.
- W3087509239 hasAuthorship W3087509239A5006394687 @default.
- W3087509239 hasAuthorship W3087509239A5016889674 @default.
- W3087509239 hasAuthorship W3087509239A5030933589 @default.
- W3087509239 hasAuthorship W3087509239A5044574416 @default.
- W3087509239 hasAuthorship W3087509239A5057726790 @default.
- W3087509239 hasConcept C109718341 @default.
- W3087509239 hasConcept C11413529 @default.
- W3087509239 hasConcept C126255220 @default.
- W3087509239 hasConcept C127413603 @default.
- W3087509239 hasConcept C13280743 @default.
- W3087509239 hasConcept C134306372 @default.
- W3087509239 hasConcept C137836250 @default.
- W3087509239 hasConcept C144024400 @default.
- W3087509239 hasConcept C147764199 @default.
- W3087509239 hasConcept C149923435 @default.
- W3087509239 hasConcept C154945302 @default.
- W3087509239 hasConcept C164752517 @default.
- W3087509239 hasConcept C173534245 @default.
- W3087509239 hasConcept C185798385 @default.
- W3087509239 hasConcept C186633575 @default.
- W3087509239 hasConcept C205649164 @default.
- W3087509239 hasConcept C2777052490 @default.
- W3087509239 hasConcept C2908647359 @default.
- W3087509239 hasConcept C33923547 @default.
- W3087509239 hasConcept C41008148 @default.
- W3087509239 hasConcept C66938386 @default.
- W3087509239 hasConceptScore W3087509239C109718341 @default.
- W3087509239 hasConceptScore W3087509239C11413529 @default.