Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087578153> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3087578153 abstract "A general fuzzy min-max (GFMM) neural network is one of the efficient neuro-fuzzy systems for classification problems. However, a disadvantage of most of the current learning algorithms for GFMM is that they can handle effectively numerical valued features only. Therefore, this paper provides some potential approaches to adapting GFMM learning algorithms for classification problems with mixed-type or only categorical features as they are very common in practical applications and often carry very useful information. We will compare and assess three main methods of handling datasets with mixed features, including the use of encoding methods, the combination of the GFMM model with other classifiers, and employing the specific learning algorithms for both types of features. The experimental results showed that the target and James-Stein are appropriate categorical encoding methods for learning algorithms of GFMM models, while the combination of GFMM neural networks and decision trees is a flexible way to enhance the classification performance of GFMM models on datasets with the mixed features. The learning algorithms with the mixed-type feature abilities are potential approaches to deal with mixed-attribute data in a natural way, but they need further improvement to achieve a better classification accuracy. Based on the analysis, we also identify the strong and weak points of different methods and propose potential research directions." @default.
- W3087578153 created "2020-09-25" @default.
- W3087578153 creator A5035804986 @default.
- W3087578153 creator A5083181106 @default.
- W3087578153 date "2020-09-01" @default.
- W3087578153 modified "2023-09-27" @default.
- W3087578153 title "An in-depth comparison of methods handling mixed-attribute data for general fuzzy min-max neural network" @default.
- W3087578153 cites W103892688 @default.
- W3087578153 cites W1584444527 @default.
- W3087578153 cites W162522237 @default.
- W3087578153 cites W2000950277 @default.
- W3087578153 cites W2007187232 @default.
- W3087578153 cites W2012351374 @default.
- W3087578153 cites W2063300059 @default.
- W3087578153 cites W2074662725 @default.
- W3087578153 cites W2087557463 @default.
- W3087578153 cites W2117812871 @default.
- W3087578153 cites W2129021863 @default.
- W3087578153 cites W2143687373 @default.
- W3087578153 cites W2168603260 @default.
- W3087578153 cites W2509292472 @default.
- W3087578153 cites W2581151820 @default.
- W3087578153 cites W2918408501 @default.
- W3087578153 cites W2963105378 @default.
- W3087578153 cites W2964022491 @default.
- W3087578153 cites W2985468578 @default.
- W3087578153 cites W2997135694 @default.
- W3087578153 cites W3080680744 @default.
- W3087578153 cites W3089580831 @default.
- W3087578153 hasPublicationYear "2020" @default.
- W3087578153 type Work @default.
- W3087578153 sameAs 3087578153 @default.
- W3087578153 citedByCount "0" @default.
- W3087578153 crossrefType "posted-content" @default.
- W3087578153 hasAuthorship W3087578153A5035804986 @default.
- W3087578153 hasAuthorship W3087578153A5083181106 @default.
- W3087578153 hasConcept C119857082 @default.
- W3087578153 hasConcept C124101348 @default.
- W3087578153 hasConcept C125411270 @default.
- W3087578153 hasConcept C138885662 @default.
- W3087578153 hasConcept C154945302 @default.
- W3087578153 hasConcept C2776401178 @default.
- W3087578153 hasConcept C41008148 @default.
- W3087578153 hasConcept C41895202 @default.
- W3087578153 hasConcept C50644808 @default.
- W3087578153 hasConcept C5274069 @default.
- W3087578153 hasConcept C58166 @default.
- W3087578153 hasConceptScore W3087578153C119857082 @default.
- W3087578153 hasConceptScore W3087578153C124101348 @default.
- W3087578153 hasConceptScore W3087578153C125411270 @default.
- W3087578153 hasConceptScore W3087578153C138885662 @default.
- W3087578153 hasConceptScore W3087578153C154945302 @default.
- W3087578153 hasConceptScore W3087578153C2776401178 @default.
- W3087578153 hasConceptScore W3087578153C41008148 @default.
- W3087578153 hasConceptScore W3087578153C41895202 @default.
- W3087578153 hasConceptScore W3087578153C50644808 @default.
- W3087578153 hasConceptScore W3087578153C5274069 @default.
- W3087578153 hasConceptScore W3087578153C58166 @default.
- W3087578153 hasLocation W30875781531 @default.
- W3087578153 hasOpenAccess W3087578153 @default.
- W3087578153 hasPrimaryLocation W30875781531 @default.
- W3087578153 hasRelatedWork W1013643156 @default.
- W3087578153 hasRelatedWork W1555434198 @default.
- W3087578153 hasRelatedWork W1572449586 @default.
- W3087578153 hasRelatedWork W1869713303 @default.
- W3087578153 hasRelatedWork W2052197451 @default.
- W3087578153 hasRelatedWork W2053836403 @default.
- W3087578153 hasRelatedWork W2111157768 @default.
- W3087578153 hasRelatedWork W2299960075 @default.
- W3087578153 hasRelatedWork W2325977474 @default.
- W3087578153 hasRelatedWork W2470906803 @default.
- W3087578153 hasRelatedWork W2515845584 @default.
- W3087578153 hasRelatedWork W2586180055 @default.
- W3087578153 hasRelatedWork W2775640780 @default.
- W3087578153 hasRelatedWork W2892867475 @default.
- W3087578153 hasRelatedWork W2910328857 @default.
- W3087578153 hasRelatedWork W2998361995 @default.
- W3087578153 hasRelatedWork W3027004089 @default.
- W3087578153 hasRelatedWork W3081772364 @default.
- W3087578153 hasRelatedWork W3157827682 @default.
- W3087578153 hasRelatedWork W1829472804 @default.
- W3087578153 isParatext "false" @default.
- W3087578153 isRetracted "false" @default.
- W3087578153 magId "3087578153" @default.
- W3087578153 workType "article" @default.