Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087579405> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3087579405 endingPage "557" @default.
- W3087579405 startingPage "546" @default.
- W3087579405 abstract "The common classifiers usually used to detect fall incidents depend on building and maintaining complex feature extraction for accurate machine learning tasks. However, these efforts have not succeeded in determining an ideal classifier or feature extraction for fall detection. In this research, we address the feature extraction problem along with the choice of the most appropriate classifier by using deep learning where the most prominent features are learned over the numerous layers of the network. More specifically, a general framework that relies on a faster region-based convolutional neural network was designed and developped to recognize the fall incidents. In particular, we designed three custom architectures and exploited transfer learning by using pre-trained networks such as the VGG-16 and AlexNet to overcome the fall detection challenge. The performance of the proposed networks showed the advantage of the pre-trained networks, where VGG-16 scored highest in those measures followed by AlexNet, the custom networks showed impressive results that were close to the pre-trained networks." @default.
- W3087579405 created "2020-09-25" @default.
- W3087579405 creator A5017213869 @default.
- W3087579405 creator A5029292323 @default.
- W3087579405 creator A5053964002 @default.
- W3087579405 date "2020-09-15" @default.
- W3087579405 modified "2023-09-27" @default.
- W3087579405 title "Automatic fall detection using region-based convolutional neural network" @default.
- W3087579405 cites W1516821381 @default.
- W3087579405 cites W1526326465 @default.
- W3087579405 cites W2028191869 @default.
- W3087579405 cites W2042568090 @default.
- W3087579405 cites W2064478533 @default.
- W3087579405 cites W2064675550 @default.
- W3087579405 cites W2074290069 @default.
- W3087579405 cites W2076068958 @default.
- W3087579405 cites W2077619750 @default.
- W3087579405 cites W2096300942 @default.
- W3087579405 cites W2109255472 @default.
- W3087579405 cites W2156059598 @default.
- W3087579405 cites W2161663128 @default.
- W3087579405 cites W2165715280 @default.
- W3087579405 cites W2166061769 @default.
- W3087579405 cites W2167718059 @default.
- W3087579405 cites W2173629880 @default.
- W3087579405 cites W2322112093 @default.
- W3087579405 cites W2337940466 @default.
- W3087579405 cites W2417374933 @default.
- W3087579405 cites W2437887222 @default.
- W3087579405 cites W2550564506 @default.
- W3087579405 cites W2565516711 @default.
- W3087579405 cites W2592090957 @default.
- W3087579405 cites W2746870488 @default.
- W3087579405 cites W2783293031 @default.
- W3087579405 cites W3145740684 @default.
- W3087579405 cites W4239510810 @default.
- W3087579405 cites W4251262448 @default.
- W3087579405 cites W639708223 @default.
- W3087579405 doi "https://doi.org/10.1080/17457300.2020.1819341" @default.
- W3087579405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32930063" @default.
- W3087579405 hasPublicationYear "2020" @default.
- W3087579405 type Work @default.
- W3087579405 sameAs 3087579405 @default.
- W3087579405 citedByCount "5" @default.
- W3087579405 countsByYear W30875794052021 @default.
- W3087579405 countsByYear W30875794052022 @default.
- W3087579405 crossrefType "journal-article" @default.
- W3087579405 hasAuthorship W3087579405A5017213869 @default.
- W3087579405 hasAuthorship W3087579405A5029292323 @default.
- W3087579405 hasAuthorship W3087579405A5053964002 @default.
- W3087579405 hasConcept C127413603 @default.
- W3087579405 hasConcept C142724271 @default.
- W3087579405 hasConcept C153180895 @default.
- W3087579405 hasConcept C154945302 @default.
- W3087579405 hasConcept C166735990 @default.
- W3087579405 hasConcept C187155963 @default.
- W3087579405 hasConcept C190385971 @default.
- W3087579405 hasConcept C22212356 @default.
- W3087579405 hasConcept C3017944768 @default.
- W3087579405 hasConcept C41008148 @default.
- W3087579405 hasConcept C526869908 @default.
- W3087579405 hasConcept C545542383 @default.
- W3087579405 hasConcept C71924100 @default.
- W3087579405 hasConcept C81363708 @default.
- W3087579405 hasConceptScore W3087579405C127413603 @default.
- W3087579405 hasConceptScore W3087579405C142724271 @default.
- W3087579405 hasConceptScore W3087579405C153180895 @default.
- W3087579405 hasConceptScore W3087579405C154945302 @default.
- W3087579405 hasConceptScore W3087579405C166735990 @default.
- W3087579405 hasConceptScore W3087579405C187155963 @default.
- W3087579405 hasConceptScore W3087579405C190385971 @default.
- W3087579405 hasConceptScore W3087579405C22212356 @default.
- W3087579405 hasConceptScore W3087579405C3017944768 @default.
- W3087579405 hasConceptScore W3087579405C41008148 @default.
- W3087579405 hasConceptScore W3087579405C526869908 @default.
- W3087579405 hasConceptScore W3087579405C545542383 @default.
- W3087579405 hasConceptScore W3087579405C71924100 @default.
- W3087579405 hasConceptScore W3087579405C81363708 @default.
- W3087579405 hasIssue "4" @default.
- W3087579405 hasLocation W30875794051 @default.
- W3087579405 hasOpenAccess W3087579405 @default.
- W3087579405 hasPrimaryLocation W30875794051 @default.
- W3087579405 hasRelatedWork W1676168016 @default.
- W3087579405 hasRelatedWork W1966493942 @default.
- W3087579405 hasRelatedWork W1967302349 @default.
- W3087579405 hasRelatedWork W1990763507 @default.
- W3087579405 hasRelatedWork W2092438568 @default.
- W3087579405 hasRelatedWork W2260842574 @default.
- W3087579405 hasRelatedWork W2282580697 @default.
- W3087579405 hasRelatedWork W3080982508 @default.
- W3087579405 hasRelatedWork W4242352147 @default.
- W3087579405 hasRelatedWork W4256104248 @default.
- W3087579405 hasVolume "27" @default.
- W3087579405 isParatext "false" @default.
- W3087579405 isRetracted "false" @default.
- W3087579405 magId "3087579405" @default.
- W3087579405 workType "article" @default.