Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087624108> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3087624108 endingPage "14" @default.
- W3087624108 startingPage "1" @default.
- W3087624108 abstract "Retinal vessel segmentation has high value for the research on the diagnosis of diabetic retinopathy, hypertension, and cardiovascular and cerebrovascular diseases. Most methods based on deep convolutional neural networks (DCNN) do not have large receptive fields or rich spatial information and cannot capture global context information of the larger areas. Therefore, it is difficult to identify the lesion area, and the segmentation efficiency is poor. This paper presents a butterfly fully convolutional neural network (BFCN). First, in view of the low contrast between blood vessels and the background in retinal blood vessel images, this paper uses automatic color enhancement (ACE) technology to increase the contrast between blood vessels and the background. Second, using the multiscale information extraction (MSIE) module in the backbone network can capture the global contextual information in a larger area to reduce the loss of feature information. At the same time, using the transfer layer (T_Layer) can not only alleviate gradient vanishing problem and repair the information loss in the downsampling process but also obtain rich spatial information. Finally, for the first time in the paper, the segmentation image is postprocessed, and the Laplacian sharpening method is used to improve the accuracy of vessel segmentation. The method mentioned in this paper has been verified by the DRIVE, STARE, and CHASE datasets, with the accuracy of 0.9627, 0.9735, and 0.9688, respectively." @default.
- W3087624108 created "2020-09-25" @default.
- W3087624108 creator A5005516772 @default.
- W3087624108 creator A5057987444 @default.
- W3087624108 creator A5061796945 @default.
- W3087624108 creator A5085556321 @default.
- W3087624108 date "2020-09-17" @default.
- W3087624108 modified "2023-09-30" @default.
- W3087624108 title "Efficient BFCN for Automatic Retinal Vessel Segmentation" @default.
- W3087624108 cites W1855930873 @default.
- W3087624108 cites W1976468890 @default.
- W3087624108 cites W2045227075 @default.
- W3087624108 cites W2072130234 @default.
- W3087624108 cites W2105923875 @default.
- W3087624108 cites W2110642225 @default.
- W3087624108 cites W2145305441 @default.
- W3087624108 cites W2149640982 @default.
- W3087624108 cites W2150769593 @default.
- W3087624108 cites W2279040869 @default.
- W3087624108 cites W2295526923 @default.
- W3087624108 cites W2327793514 @default.
- W3087624108 cites W2591372821 @default.
- W3087624108 cites W2606663706 @default.
- W3087624108 cites W2744819418 @default.
- W3087624108 cites W2794329395 @default.
- W3087624108 cites W2811275426 @default.
- W3087624108 cites W2898910301 @default.
- W3087624108 cites W2900328506 @default.
- W3087624108 cites W2923524561 @default.
- W3087624108 cites W2939757594 @default.
- W3087624108 cites W2940427983 @default.
- W3087624108 cites W2962850002 @default.
- W3087624108 doi "https://doi.org/10.1155/2020/6439407" @default.
- W3087624108 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7803293" @default.
- W3087624108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33489334" @default.
- W3087624108 hasPublicationYear "2020" @default.
- W3087624108 type Work @default.
- W3087624108 sameAs 3087624108 @default.
- W3087624108 citedByCount "4" @default.
- W3087624108 countsByYear W30876241082020 @default.
- W3087624108 countsByYear W30876241082022 @default.
- W3087624108 countsByYear W30876241082023 @default.
- W3087624108 crossrefType "journal-article" @default.
- W3087624108 hasAuthorship W3087624108A5005516772 @default.
- W3087624108 hasAuthorship W3087624108A5057987444 @default.
- W3087624108 hasAuthorship W3087624108A5061796945 @default.
- W3087624108 hasAuthorship W3087624108A5085556321 @default.
- W3087624108 hasBestOaLocation W30876241081 @default.
- W3087624108 hasConcept C110384440 @default.
- W3087624108 hasConcept C115961682 @default.
- W3087624108 hasConcept C151730666 @default.
- W3087624108 hasConcept C153180895 @default.
- W3087624108 hasConcept C154945302 @default.
- W3087624108 hasConcept C2776502983 @default.
- W3087624108 hasConcept C2779343474 @default.
- W3087624108 hasConcept C31972630 @default.
- W3087624108 hasConcept C41008148 @default.
- W3087624108 hasConcept C71924100 @default.
- W3087624108 hasConcept C81363708 @default.
- W3087624108 hasConcept C86803240 @default.
- W3087624108 hasConcept C89600930 @default.
- W3087624108 hasConceptScore W3087624108C110384440 @default.
- W3087624108 hasConceptScore W3087624108C115961682 @default.
- W3087624108 hasConceptScore W3087624108C151730666 @default.
- W3087624108 hasConceptScore W3087624108C153180895 @default.
- W3087624108 hasConceptScore W3087624108C154945302 @default.
- W3087624108 hasConceptScore W3087624108C2776502983 @default.
- W3087624108 hasConceptScore W3087624108C2779343474 @default.
- W3087624108 hasConceptScore W3087624108C31972630 @default.
- W3087624108 hasConceptScore W3087624108C41008148 @default.
- W3087624108 hasConceptScore W3087624108C71924100 @default.
- W3087624108 hasConceptScore W3087624108C81363708 @default.
- W3087624108 hasConceptScore W3087624108C86803240 @default.
- W3087624108 hasConceptScore W3087624108C89600930 @default.
- W3087624108 hasLocation W30876241081 @default.
- W3087624108 hasLocation W30876241082 @default.
- W3087624108 hasLocation W30876241083 @default.
- W3087624108 hasLocation W30876241084 @default.
- W3087624108 hasOpenAccess W3087624108 @default.
- W3087624108 hasPrimaryLocation W30876241081 @default.
- W3087624108 hasRelatedWork W1669643531 @default.
- W3087624108 hasRelatedWork W1982826852 @default.
- W3087624108 hasRelatedWork W1987421842 @default.
- W3087624108 hasRelatedWork W2005437358 @default.
- W3087624108 hasRelatedWork W2008656436 @default.
- W3087624108 hasRelatedWork W2023558673 @default.
- W3087624108 hasRelatedWork W2110230079 @default.
- W3087624108 hasRelatedWork W2134924024 @default.
- W3087624108 hasRelatedWork W2517104666 @default.
- W3087624108 hasRelatedWork W3091976719 @default.
- W3087624108 hasVolume "2020" @default.
- W3087624108 isParatext "false" @default.
- W3087624108 isRetracted "false" @default.
- W3087624108 magId "3087624108" @default.
- W3087624108 workType "article" @default.