Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087662833> ?p ?o ?g. }
- W3087662833 abstract "Abstract Edge computing technology has drawn the keystone of future intelligent transportation systems, especially in smart cities, because of processing data that are near to the user location present at the edge of the cloud server. Generally, in smart cities where distributed things have access to computational resources, data transfer becomes inevitable because of high latency, thereby resulting in crucial situations. Even though numerous technologies have emerged for improving the data communication among geo‐distributed devices received from the cloud server but still, it lags in low learning performance. To address these challenges, an innovative artificial intelligence (AI) based edge node (E‐Node) algorithm is implemented to optimize the edge to edge learning for well‐organized data migration. To attain high reliability, AI‐K‐means neural network (KNN) and convolution neural network (CNN) is used initially for pre‐processing and filtering the edge node. Further, the proposed E‐Node algorithm outperforms the optimization technique effectively through the edge to edge computing The reliability performance is increased by reducing the node optimization time from 132 to 98 ms for 25 kb data and data transmission time is reduced from 93 to 45 ms for 80 kb data, thus reducing the latency in an edge envisioned environment." @default.
- W3087662833 created "2020-09-25" @default.
- W3087662833 creator A5000292528 @default.
- W3087662833 creator A5008815636 @default.
- W3087662833 creator A5036894646 @default.
- W3087662833 creator A5077318143 @default.
- W3087662833 creator A5084032371 @default.
- W3087662833 creator A5089567995 @default.
- W3087662833 date "2020-09-16" @default.
- W3087662833 modified "2023-10-14" @default.
- W3087662833 title "Efficient data transfer in edge envisioned environment using artificial intelligence based edge node algorithm" @default.
- W3087662833 cites W1994107727 @default.
- W3087662833 cites W2042986815 @default.
- W3087662833 cites W2058915569 @default.
- W3087662833 cites W2064997230 @default.
- W3087662833 cites W2097142667 @default.
- W3087662833 cites W2111619626 @default.
- W3087662833 cites W2114574164 @default.
- W3087662833 cites W2114623221 @default.
- W3087662833 cites W2126462381 @default.
- W3087662833 cites W2577606900 @default.
- W3087662833 cites W2585425668 @default.
- W3087662833 cites W2620831508 @default.
- W3087662833 cites W2624989916 @default.
- W3087662833 cites W2742716754 @default.
- W3087662833 cites W2743321735 @default.
- W3087662833 cites W2761757319 @default.
- W3087662833 cites W2764299998 @default.
- W3087662833 cites W2782787772 @default.
- W3087662833 cites W2786070938 @default.
- W3087662833 cites W2786652201 @default.
- W3087662833 cites W2787118002 @default.
- W3087662833 cites W2787444476 @default.
- W3087662833 cites W2809251854 @default.
- W3087662833 cites W2869015012 @default.
- W3087662833 cites W2885386361 @default.
- W3087662833 cites W2885936154 @default.
- W3087662833 cites W2887534813 @default.
- W3087662833 cites W2888299293 @default.
- W3087662833 cites W2895973886 @default.
- W3087662833 cites W2896310287 @default.
- W3087662833 cites W2897099070 @default.
- W3087662833 cites W2898082692 @default.
- W3087662833 cites W2900221635 @default.
- W3087662833 cites W2911279221 @default.
- W3087662833 cites W2912326896 @default.
- W3087662833 cites W2914042153 @default.
- W3087662833 cites W2917996640 @default.
- W3087662833 cites W2929545370 @default.
- W3087662833 cites W2942945155 @default.
- W3087662833 cites W2961840197 @default.
- W3087662833 cites W2962883027 @default.
- W3087662833 cites W2965580337 @default.
- W3087662833 cites W2965780602 @default.
- W3087662833 cites W2968931736 @default.
- W3087662833 cites W2977724575 @default.
- W3087662833 cites W2996038109 @default.
- W3087662833 cites W3003652270 @default.
- W3087662833 cites W3004476180 @default.
- W3087662833 cites W3013423866 @default.
- W3087662833 cites W3102232718 @default.
- W3087662833 cites W3106445841 @default.
- W3087662833 cites W4236853429 @default.
- W3087662833 doi "https://doi.org/10.1002/ett.4110" @default.
- W3087662833 hasPublicationYear "2020" @default.
- W3087662833 type Work @default.
- W3087662833 sameAs 3087662833 @default.
- W3087662833 citedByCount "12" @default.
- W3087662833 countsByYear W30876628332021 @default.
- W3087662833 countsByYear W30876628332022 @default.
- W3087662833 countsByYear W30876628332023 @default.
- W3087662833 crossrefType "journal-article" @default.
- W3087662833 hasAuthorship W3087662833A5000292528 @default.
- W3087662833 hasAuthorship W3087662833A5008815636 @default.
- W3087662833 hasAuthorship W3087662833A5036894646 @default.
- W3087662833 hasAuthorship W3087662833A5077318143 @default.
- W3087662833 hasAuthorship W3087662833A5084032371 @default.
- W3087662833 hasAuthorship W3087662833A5089567995 @default.
- W3087662833 hasConcept C111919701 @default.
- W3087662833 hasConcept C120314980 @default.
- W3087662833 hasConcept C121332964 @default.
- W3087662833 hasConcept C127413603 @default.
- W3087662833 hasConcept C138236772 @default.
- W3087662833 hasConcept C150899416 @default.
- W3087662833 hasConcept C154945302 @default.
- W3087662833 hasConcept C162307627 @default.
- W3087662833 hasConcept C163258240 @default.
- W3087662833 hasConcept C2778456923 @default.
- W3087662833 hasConcept C31258907 @default.
- W3087662833 hasConcept C41008148 @default.
- W3087662833 hasConcept C43214815 @default.
- W3087662833 hasConcept C50644808 @default.
- W3087662833 hasConcept C557945733 @default.
- W3087662833 hasConcept C62520636 @default.
- W3087662833 hasConcept C62611344 @default.
- W3087662833 hasConcept C66938386 @default.
- W3087662833 hasConcept C76155785 @default.
- W3087662833 hasConcept C79974875 @default.
- W3087662833 hasConcept C81363708 @default.
- W3087662833 hasConcept C82876162 @default.