Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087710711> ?p ?o ?g. }
- W3087710711 endingPage "393" @default.
- W3087710711 startingPage "375" @default.
- W3087710711 abstract "Learning to select appropriate actions based on their values is fundamental to adaptive behavior. This form of learning is supported by fronto-striatal systems. The dorsal-lateral prefrontal cortex (dlPFC) and the dorsal striatum (dSTR), which are strongly interconnected, are key nodes in this circuitry. Substantial experimental evidence, including neurophysiological recordings, have shown that neurons in these structures represent key aspects of learning. The computational mechanisms that shape the neurophysiological responses, however, are not clear. To examine this, we developed a recurrent neural network (RNN) model of the dlPFC-dSTR circuit and trained it on an oculomotor sequence learning task. We compared the activity generated by the model to activity recorded from monkey dlPFC and dSTR in the same task. This network consisted of a striatal component which encoded action values, and a prefrontal component which selected appropriate actions. After training, this system was able to autonomously represent and update action values and select actions, thus being able to closely approximate the representational structure in corticostriatal recordings. We found that learning to select the correct actions drove action-sequence representations further apart in activity space, both in the model and in the neural data. The model revealed that learning proceeds by increasing the distance between sequence-specific representations. This makes it more likely that the model will select the appropriate action sequence as learning develops. Our model thus supports the hypothesis that learning in networks drives the neural representations of actions further apart, increasing the probability that the network generates correct actions as learning proceeds. Altogether, this study advances our understanding of how neural circuit dynamics are involved in neural computation, revealing how dynamics in the corticostriatal system support task learning." @default.
- W3087710711 created "2020-09-25" @default.
- W3087710711 creator A5010289380 @default.
- W3087710711 creator A5033931489 @default.
- W3087710711 creator A5080445433 @default.
- W3087710711 date "2020-12-01" @default.
- W3087710711 modified "2023-10-15" @default.
- W3087710711 title "Learning to select actions shapes recurrent dynamics in the corticostriatal system" @default.
- W3087710711 cites W1515138319 @default.
- W3087710711 cites W1547537150 @default.
- W3087710711 cites W1976284302 @default.
- W3087710711 cites W1977554352 @default.
- W3087710711 cites W1979441832 @default.
- W3087710711 cites W1990468088 @default.
- W3087710711 cites W1991603311 @default.
- W3087710711 cites W1993291679 @default.
- W3087710711 cites W2000372473 @default.
- W3087710711 cites W2008184405 @default.
- W3087710711 cites W2015609730 @default.
- W3087710711 cites W2022881357 @default.
- W3087710711 cites W2025054170 @default.
- W3087710711 cites W2028810361 @default.
- W3087710711 cites W2029053566 @default.
- W3087710711 cites W2047125104 @default.
- W3087710711 cites W2049856429 @default.
- W3087710711 cites W2058616551 @default.
- W3087710711 cites W2060052647 @default.
- W3087710711 cites W2060269189 @default.
- W3087710711 cites W2061231754 @default.
- W3087710711 cites W2064319583 @default.
- W3087710711 cites W2068949971 @default.
- W3087710711 cites W2071302132 @default.
- W3087710711 cites W2076256116 @default.
- W3087710711 cites W2076660877 @default.
- W3087710711 cites W2081030963 @default.
- W3087710711 cites W2083248528 @default.
- W3087710711 cites W2083447856 @default.
- W3087710711 cites W2093397813 @default.
- W3087710711 cites W2094037121 @default.
- W3087710711 cites W2095254632 @default.
- W3087710711 cites W2099231026 @default.
- W3087710711 cites W2102701721 @default.
- W3087710711 cites W2102803424 @default.
- W3087710711 cites W2104148727 @default.
- W3087710711 cites W2124780821 @default.
- W3087710711 cites W2127958135 @default.
- W3087710711 cites W2129478155 @default.
- W3087710711 cites W2133105703 @default.
- W3087710711 cites W2135993484 @default.
- W3087710711 cites W2143590399 @default.
- W3087710711 cites W2143764575 @default.
- W3087710711 cites W2152868521 @default.
- W3087710711 cites W2155705874 @default.
- W3087710711 cites W2170434170 @default.
- W3087710711 cites W2295845209 @default.
- W3087710711 cites W2328670972 @default.
- W3087710711 cites W2400568150 @default.
- W3087710711 cites W2419461529 @default.
- W3087710711 cites W2520280309 @default.
- W3087710711 cites W2600384540 @default.
- W3087710711 cites W2600919610 @default.
- W3087710711 cites W2621961142 @default.
- W3087710711 cites W2756497902 @default.
- W3087710711 cites W2765818177 @default.
- W3087710711 cites W2794448029 @default.
- W3087710711 cites W2896846197 @default.
- W3087710711 cites W2898208057 @default.
- W3087710711 cites W2917491140 @default.
- W3087710711 cites W2938321354 @default.
- W3087710711 cites W2949369413 @default.
- W3087710711 cites W2950459925 @default.
- W3087710711 cites W2976241900 @default.
- W3087710711 cites W2978368159 @default.
- W3087710711 cites W2981975383 @default.
- W3087710711 doi "https://doi.org/10.1016/j.neunet.2020.09.008" @default.
- W3087710711 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7685243" @default.
- W3087710711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32992244" @default.
- W3087710711 hasPublicationYear "2020" @default.
- W3087710711 type Work @default.
- W3087710711 sameAs 3087710711 @default.
- W3087710711 citedByCount "12" @default.
- W3087710711 countsByYear W30877107112020 @default.
- W3087710711 countsByYear W30877107112021 @default.
- W3087710711 countsByYear W30877107112022 @default.
- W3087710711 countsByYear W30877107112023 @default.
- W3087710711 crossrefType "journal-article" @default.
- W3087710711 hasAuthorship W3087710711A5010289380 @default.
- W3087710711 hasAuthorship W3087710711A5033931489 @default.
- W3087710711 hasAuthorship W3087710711A5080445433 @default.
- W3087710711 hasBestOaLocation W30877107111 @default.
- W3087710711 hasConcept C119857082 @default.
- W3087710711 hasConcept C121332964 @default.
- W3087710711 hasConcept C152478114 @default.
- W3087710711 hasConcept C154945302 @default.
- W3087710711 hasConcept C15744967 @default.
- W3087710711 hasConcept C162324750 @default.
- W3087710711 hasConcept C166109690 @default.
- W3087710711 hasConcept C168167062 @default.