Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087777471> ?p ?o ?g. }
- W3087777471 endingPage "3121" @default.
- W3087777471 startingPage "3121" @default.
- W3087777471 abstract "Leaf area index (LAI) is an essential indicator of crop development and growth. For many agricultural applications, satellite-based LAI estimates at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides this opportunity. In this study, we evaluated the leaf area index generated from three methods, namely, existing vegetation index (VI) relationships applied to Harmonized Landsat-8 and Sentinel-2 (HLS) surface reflectance produced by NASA, the SNAP biophysical model, and the THEIA L2A surface reflectance products from Sentinel-2. The intercomparison was conducted over the agricultural scheme in Bekaa (Lebanon) using a large set of in-field LAIs and other biophysical measurements collected in a wide variety of canopy structures during the 2018 and 2019 growing seasons. The major studied crops include herbs (e.g., cannabis: Cannabis sativa, mint: Mentha, and others), potato (Solanum tuberosum), and vegetables (e.g., bean: Phaseolus vulgaris, cabbage: Brassica oleracea, carrot: Daucus carota subsp. sativus, and others). Additionally, crop-specific height and above-ground biomass relationships with LAIs were investigated. Results show that of the empirical VI relationships tested, the EVI2-based HLS models statistically performed the best, specifically, the LAI models originally developed for wheat (RMSE:1.27), maize (RMSE:1.34), and row crops (RMSE:1.38). LAI derived through European Space Agency’s (ESA) Sentinel Application Platform (SNAP) biophysical processor underestimated LAI and provided less accurate estimates (RMSE of 1.72). Additionally, the S2 SeLI LAI algorithm (from SNAP biophysical processor) produced an acceptable accuracy level compared to HLS-EVI2 models (RMSE of 1.38) but with significant underestimation at high LAI values. Our findings show that the LAI-VI relationship, in general, is crop-specific with both linear and non-linear regression forms. Among the examined indices, EVI2 outperformed other vegetation indices when all crops were combined, and therefore it can be identified as an index that is best suited for a unified algorithm for crops in semi-arid irrigated regions with heterogeneous landscapes. Furthermore, our analysis shows that the observed height-LAI relationship is crop-specific and essentially linear with an R2 value of 0.82 for potato, 0.79 for wheat, and 0.50 for both cannabis and tobacco. The ability of the linear regression to estimate the fresh and dry above-ground biomass of potato from both observed height and LAI was reasonable, yielding R2: ~0.60." @default.
- W3087777471 created "2020-10-01" @default.
- W3087777471 creator A5001529991 @default.
- W3087777471 creator A5070481950 @default.
- W3087777471 creator A5082148318 @default.
- W3087777471 creator A5082926470 @default.
- W3087777471 date "2020-09-23" @default.
- W3087777471 modified "2023-10-06" @default.
- W3087777471 title "Assessment of Leaf Area Index Models Using Harmonized Landsat and Sentinel-2 Surface Reflectance Data over a Semi-Arid Irrigated Landscape" @default.
- W3087777471 cites W1918142376 @default.
- W3087777471 cites W1964217023 @default.
- W3087777471 cites W1965825034 @default.
- W3087777471 cites W1966006391 @default.
- W3087777471 cites W1967248741 @default.
- W3087777471 cites W1971556964 @default.
- W3087777471 cites W1974289021 @default.
- W3087777471 cites W1978956746 @default.
- W3087777471 cites W1979723077 @default.
- W3087777471 cites W1984682798 @default.
- W3087777471 cites W2000868508 @default.
- W3087777471 cites W2001599060 @default.
- W3087777471 cites W2005146932 @default.
- W3087777471 cites W2010979673 @default.
- W3087777471 cites W2011010318 @default.
- W3087777471 cites W2012086085 @default.
- W3087777471 cites W2014897524 @default.
- W3087777471 cites W2015037454 @default.
- W3087777471 cites W2025745000 @default.
- W3087777471 cites W2027776168 @default.
- W3087777471 cites W2036887984 @default.
- W3087777471 cites W2038617433 @default.
- W3087777471 cites W2039240409 @default.
- W3087777471 cites W2043142216 @default.
- W3087777471 cites W2049280900 @default.
- W3087777471 cites W2051859009 @default.
- W3087777471 cites W2054764254 @default.
- W3087777471 cites W2055580117 @default.
- W3087777471 cites W2056352756 @default.
- W3087777471 cites W2057021477 @default.
- W3087777471 cites W2060176133 @default.
- W3087777471 cites W2060426168 @default.
- W3087777471 cites W2061382717 @default.
- W3087777471 cites W2062136328 @default.
- W3087777471 cites W2066612219 @default.
- W3087777471 cites W2075349910 @default.
- W3087777471 cites W2078557491 @default.
- W3087777471 cites W2087047858 @default.
- W3087777471 cites W2089464686 @default.
- W3087777471 cites W2091331161 @default.
- W3087777471 cites W2093292496 @default.
- W3087777471 cites W2094420085 @default.
- W3087777471 cites W2094677081 @default.
- W3087777471 cites W2105339792 @default.
- W3087777471 cites W2108806738 @default.
- W3087777471 cites W2109006150 @default.
- W3087777471 cites W2110079015 @default.
- W3087777471 cites W2113410727 @default.
- W3087777471 cites W2116522204 @default.
- W3087777471 cites W2116635928 @default.
- W3087777471 cites W2125144297 @default.
- W3087777471 cites W2125397877 @default.
- W3087777471 cites W2135609486 @default.
- W3087777471 cites W2136181038 @default.
- W3087777471 cites W2143034640 @default.
- W3087777471 cites W2143494625 @default.
- W3087777471 cites W2151023338 @default.
- W3087777471 cites W2151647593 @default.
- W3087777471 cites W2153243519 @default.
- W3087777471 cites W2161491521 @default.
- W3087777471 cites W2161789352 @default.
- W3087777471 cites W2161815745 @default.
- W3087777471 cites W2168301479 @default.
- W3087777471 cites W2175429871 @default.
- W3087777471 cites W2176972851 @default.
- W3087777471 cites W2296609147 @default.
- W3087777471 cites W2326555434 @default.
- W3087777471 cites W2342430100 @default.
- W3087777471 cites W2462586880 @default.
- W3087777471 cites W2510257774 @default.
- W3087777471 cites W2531109463 @default.
- W3087777471 cites W2596051487 @default.
- W3087777471 cites W2609044008 @default.
- W3087777471 cites W2618092941 @default.
- W3087777471 cites W2770547659 @default.
- W3087777471 cites W2808125284 @default.
- W3087777471 cites W2888842191 @default.
- W3087777471 cites W2897285410 @default.
- W3087777471 cites W2907360806 @default.
- W3087777471 cites W2915777673 @default.
- W3087777471 cites W2921983296 @default.
- W3087777471 cites W2938678297 @default.
- W3087777471 cites W2940978261 @default.
- W3087777471 cites W2944706895 @default.
- W3087777471 cites W2945310370 @default.
- W3087777471 cites W3041165813 @default.
- W3087777471 cites W4237125676 @default.
- W3087777471 doi "https://doi.org/10.3390/rs12193121" @default.
- W3087777471 hasPublicationYear "2020" @default.