Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087780934> ?p ?o ?g. }
- W3087780934 endingPage "602" @default.
- W3087780934 startingPage "586" @default.
- W3087780934 abstract "Among the characteristic symptoms of schizophrenia, negative symptoms are a category. The existence of negative symptoms results in a diminution of normal behaviors and functions for schizophrenic patients. In this research, we focus on the affective flattening of negative symptoms to explore potential biomarkers to achieve automatic diagnosis. This work proposes an automatic procedure for detecting the negative symptoms of schizophrenic patients based on speech signal processing. In this procedure, three features are initially proposed: the symmetric spectral difference level (SSDL), quantization error and vector angle (QEVA), and standard dynamic volume value (SDVV). The SSDL feature is designed with the aim of emphasizing spectral differences that contribute to the evaluation of emotional richness. The QEVA is proposed to reflect the variations in tone using one cumulative error indicator and one variation evaluation indicator. The SDVV feature aims to represent the modulation of speech intensity, considering the speaking behavior of schizophrenic patients. Experiments evaluating the discriminative capabilities of the three features are conducted using a speech database collected from 56 participants (28 schizophrenic patients and 28 healthy controls). The classifier employed in these experiments is a simple decision tree. Three other binary classifiers [linear discrimination (LD), logistic regression (LR), and a support vector machine (SVM)] are also tested to compare their performances with the decision tree in this work. Based on the decision tree classifier, the discrimination accuracy levels of schizophrenic patients and control subjects using the SDLL, QEVA, and SDVV features are in the range of 80.5%-83%, 65%-73%, and 87%- 91.5%, respectively. When the three features are combined, the best discrimination accuracy of schizophrenic patients and control subjects is 98.2%, with an area under the receiver operations characteristic curve (AUC) value of 98%. Note to Practitioners-This article is motivated by the problems of the diagnosis of negative symptoms in schizophrenia and the timely monitoring of schizophrenic patients. In clinic, there exists a high patient-to-clinician ratio and the diagnostic result depends on the subjective experience of the clinician. It is necessary to develop an automatic and objective procedure for the diagnosis and monitoring of schizophrenic patients. Speech disorders are among the salient characteristics of negative symptoms. In this work, an automatic procedure for detecting the negative symptoms based on speech signal processing is proposed. This automatic procedure is achieved based on three newly presented acoustic features involving the characteristics of schizophrenic speech, which consider the speaking behavior of schizophrenic patients. This automatic procedure and the information of the three acoustic features may serve as an aid to clinicians and could potentially help them in providing better monitoring of schizophrenic patients." @default.
- W3087780934 created "2020-10-01" @default.
- W3087780934 creator A5004224507 @default.
- W3087780934 creator A5004501300 @default.
- W3087780934 creator A5032657699 @default.
- W3087780934 creator A5056054469 @default.
- W3087780934 creator A5057936279 @default.
- W3087780934 date "2021-04-01" @default.
- W3087780934 modified "2023-09-26" @default.
- W3087780934 title "Automatic Detection of Negative Symptoms in Schizophrenia via Acoustically Measured Features Associated With Affective Flattening" @default.
- W3087780934 cites W1129581376 @default.
- W3087780934 cites W1568263921 @default.
- W3087780934 cites W1912857193 @default.
- W3087780934 cites W1976095975 @default.
- W3087780934 cites W1976447689 @default.
- W3087780934 cites W1979736058 @default.
- W3087780934 cites W1982023345 @default.
- W3087780934 cites W1995957648 @default.
- W3087780934 cites W1996020380 @default.
- W3087780934 cites W2003258385 @default.
- W3087780934 cites W2005685727 @default.
- W3087780934 cites W2010682154 @default.
- W3087780934 cites W2010817634 @default.
- W3087780934 cites W2013284534 @default.
- W3087780934 cites W2014355431 @default.
- W3087780934 cites W2034829178 @default.
- W3087780934 cites W2043215190 @default.
- W3087780934 cites W2043394727 @default.
- W3087780934 cites W2052998051 @default.
- W3087780934 cites W2054649989 @default.
- W3087780934 cites W2054804828 @default.
- W3087780934 cites W2058308089 @default.
- W3087780934 cites W2061662172 @default.
- W3087780934 cites W2062971827 @default.
- W3087780934 cites W2063781029 @default.
- W3087780934 cites W2064272665 @default.
- W3087780934 cites W2067098350 @default.
- W3087780934 cites W2074788634 @default.
- W3087780934 cites W2076236170 @default.
- W3087780934 cites W2085223461 @default.
- W3087780934 cites W2102554672 @default.
- W3087780934 cites W2102784477 @default.
- W3087780934 cites W2108511845 @default.
- W3087780934 cites W2112026070 @default.
- W3087780934 cites W2117691074 @default.
- W3087780934 cites W2142331227 @default.
- W3087780934 cites W2146739630 @default.
- W3087780934 cites W2158698691 @default.
- W3087780934 cites W2161494756 @default.
- W3087780934 cites W2164355969 @default.
- W3087780934 cites W2166364206 @default.
- W3087780934 cites W2171111401 @default.
- W3087780934 cites W2171771417 @default.
- W3087780934 cites W2306606908 @default.
- W3087780934 cites W2319927805 @default.
- W3087780934 cites W2320852822 @default.
- W3087780934 cites W2356696605 @default.
- W3087780934 cites W2408056330 @default.
- W3087780934 cites W2430107470 @default.
- W3087780934 cites W2467618961 @default.
- W3087780934 cites W2516407990 @default.
- W3087780934 cites W2550196177 @default.
- W3087780934 cites W2577513693 @default.
- W3087780934 cites W2586821431 @default.
- W3087780934 cites W2605421120 @default.
- W3087780934 cites W2735559731 @default.
- W3087780934 cites W2735746628 @default.
- W3087780934 cites W2745286311 @default.
- W3087780934 cites W2759124302 @default.
- W3087780934 cites W2760881723 @default.
- W3087780934 cites W2766600950 @default.
- W3087780934 cites W2766941157 @default.
- W3087780934 cites W2770188460 @default.
- W3087780934 cites W2782397925 @default.
- W3087780934 cites W2789813335 @default.
- W3087780934 cites W2791063712 @default.
- W3087780934 cites W2791935814 @default.
- W3087780934 cites W2802904398 @default.
- W3087780934 cites W2884274563 @default.
- W3087780934 cites W2884527106 @default.
- W3087780934 cites W2885397520 @default.
- W3087780934 cites W2888938345 @default.
- W3087780934 cites W2889223999 @default.
- W3087780934 cites W2890739253 @default.
- W3087780934 cites W2895742364 @default.
- W3087780934 cites W2901587970 @default.
- W3087780934 cites W2907643092 @default.
- W3087780934 cites W2911424673 @default.
- W3087780934 cites W2913975235 @default.
- W3087780934 cites W2938637279 @default.
- W3087780934 cites W2955277345 @default.
- W3087780934 cites W2962905110 @default.
- W3087780934 cites W2963192981 @default.
- W3087780934 cites W2963382518 @default.
- W3087780934 cites W2967255983 @default.
- W3087780934 cites W2989694188 @default.
- W3087780934 cites W2990849382 @default.
- W3087780934 cites W2990941178 @default.