Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087811306> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3087811306 endingPage "504" @default.
- W3087811306 startingPage "489" @default.
- W3087811306 abstract "State-of-the-art approaches in the field of neural-embedding models (NEMs) enable progress in the automatic extraction and prediction of semantic relations between important entities like active substances, diseases, and genes. In particular, the prediction property is making them valuable for important research-related tasks such as hypothesis generation and drug-repositioning. A core challenge in the biomedical domain is to have interpretable semantics from NEMs that can distinguish, for instance, between the following two situations: a) drug ( x ) induces disease ( y ) and b) drug ( x ) treats disease ( y ). However, NEMs alone cannot distinguish between associations such as treats or induces. Is it possible to develop a model to learn a latent representation from the NEMs capable of such disambiguation? To what extent do we need domain knowledge to succeed in the task? In this paper, we answer both questions and show that our proposed approach not only succeeds in the disambiguation task but also advances current growing research efforts to find real predictions using a sophisticated retrospective analysis." @default.
- W3087811306 created "2020-10-01" @default.
- W3087811306 creator A5019877290 @default.
- W3087811306 creator A5028160430 @default.
- W3087811306 creator A5048280173 @default.
- W3087811306 creator A5061551951 @default.
- W3087811306 date "2020-01-01" @default.
- W3087811306 modified "2023-09-24" @default.
- W3087811306 title "Semantic Disambiguation of Embedded Drug-Disease Associations Using Semantically Enriched Deep-Learning Approaches" @default.
- W3087811306 cites W1230873221 @default.
- W3087811306 cites W1854884267 @default.
- W3087811306 cites W1987180264 @default.
- W3087811306 cites W1994306321 @default.
- W3087811306 cites W1994658365 @default.
- W3087811306 cites W2057954853 @default.
- W3087811306 cites W2098146716 @default.
- W3087811306 cites W2113072832 @default.
- W3087811306 cites W2138512826 @default.
- W3087811306 cites W2155157373 @default.
- W3087811306 cites W2251803266 @default.
- W3087811306 cites W2804611977 @default.
- W3087811306 cites W2892573831 @default.
- W3087811306 cites W2896479849 @default.
- W3087811306 cites W2900942299 @default.
- W3087811306 cites W2953641512 @default.
- W3087811306 doi "https://doi.org/10.1007/978-3-030-59419-0_30" @default.
- W3087811306 hasPublicationYear "2020" @default.
- W3087811306 type Work @default.
- W3087811306 sameAs 3087811306 @default.
- W3087811306 citedByCount "2" @default.
- W3087811306 countsByYear W30878113062020 @default.
- W3087811306 countsByYear W30878113062022 @default.
- W3087811306 crossrefType "book-chapter" @default.
- W3087811306 hasAuthorship W3087811306A5019877290 @default.
- W3087811306 hasAuthorship W3087811306A5028160430 @default.
- W3087811306 hasAuthorship W3087811306A5048280173 @default.
- W3087811306 hasAuthorship W3087811306A5061551951 @default.
- W3087811306 hasConcept C108583219 @default.
- W3087811306 hasConcept C154945302 @default.
- W3087811306 hasConcept C204321447 @default.
- W3087811306 hasConcept C41008148 @default.
- W3087811306 hasConceptScore W3087811306C108583219 @default.
- W3087811306 hasConceptScore W3087811306C154945302 @default.
- W3087811306 hasConceptScore W3087811306C204321447 @default.
- W3087811306 hasConceptScore W3087811306C41008148 @default.
- W3087811306 hasLocation W30878113061 @default.
- W3087811306 hasOpenAccess W3087811306 @default.
- W3087811306 hasPrimaryLocation W30878113061 @default.
- W3087811306 hasRelatedWork W2126887587 @default.
- W3087811306 hasRelatedWork W2731899572 @default.
- W3087811306 hasRelatedWork W2773616286 @default.
- W3087811306 hasRelatedWork W2939353110 @default.
- W3087811306 hasRelatedWork W2993873509 @default.
- W3087811306 hasRelatedWork W3009238340 @default.
- W3087811306 hasRelatedWork W3020224787 @default.
- W3087811306 hasRelatedWork W3215138031 @default.
- W3087811306 hasRelatedWork W4220740160 @default.
- W3087811306 hasRelatedWork W4230611425 @default.
- W3087811306 isParatext "false" @default.
- W3087811306 isRetracted "false" @default.
- W3087811306 magId "3087811306" @default.
- W3087811306 workType "book-chapter" @default.