Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087861066> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3087861066 abstract "The success of Customer Relationship Management (CRM) programs ultimately depends on the firm’s ability to understand consumers’ preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can tailor their activities towards the right customers, therefore increasing the value of customers while maximizing the return on the marketing efforts. However, identifying differences across customers is a very difficult task when firms attempt to manage new customers, for whom only the first purchase has been observed. For those customers, the lack of repeated observations poses a structural challenge to infer unobserved differences across them. This is what we call the problem of CRM, whereby companies have difficulties leveraging existing data when they attempt to make inferences about customers at the beginning of their relationship.In this research we propose a solution to the cold start problem by developing a modeling framework that leverages the information collected at the moment of acquisition. The main aspect of the model is that it flexibly captures latent dimensions that govern both the behaviors observed at acquisition as well as future propensities to buy and to respond to marketing actions. Using probabilistic machine learning, we combine deep exponential families with the demand model, relating behaviors observed in the first purchase with consequent customer behavior. The model can be integrated with a variety of demand specifications and is flexible enough to capture a wide range of heterogeneity structures (both linear and non-linear), thus being applicable to a variety of behaviors and contexts. We validate our approach in a retail context and illustrate how the focal firm can overcome the cold start problem by augmenting the (thin) historical data for new customers using the firm's transactional database and applying the proposed modeling framework to those data. We empirically demonstrate the model's ability at identifying high-value customers as well as those most sensitive to marketing actions, right after their first purchase. Leveraging the model predictions, the firm can also identify the most relevant variables—transaction characteristics or products being purchased at the moment of acquisition—that are predictive of behaviors of interest (e.g., sensitivity to email communications)." @default.
- W3087861066 created "2020-10-01" @default.
- W3087861066 creator A5004399999 @default.
- W3087861066 creator A5047325958 @default.
- W3087861066 date "2017-01-01" @default.
- W3087861066 modified "2023-09-27" @default.
- W3087861066 title "First Impressions Count: Leveraging Acquisition Data for Customer Management" @default.
- W3087861066 cites W1567512734 @default.
- W3087861066 cites W2047375989 @default.
- W3087861066 cites W2056199100 @default.
- W3087861066 cites W2067534308 @default.
- W3087861066 cites W2107581815 @default.
- W3087861066 cites W2124737582 @default.
- W3087861066 cites W2130747900 @default.
- W3087861066 cites W2139701068 @default.
- W3087861066 cites W2147813589 @default.
- W3087861066 cites W2156957852 @default.
- W3087861066 cites W2165968947 @default.
- W3087861066 cites W2170867720 @default.
- W3087861066 cites W3016709501 @default.
- W3087861066 cites W3121579645 @default.
- W3087861066 cites W3121972256 @default.
- W3087861066 cites W3122149192 @default.
- W3087861066 cites W3123399111 @default.
- W3087861066 cites W3123668356 @default.
- W3087861066 cites W3123752199 @default.
- W3087861066 cites W3123955198 @default.
- W3087861066 cites W4240199737 @default.
- W3087861066 cites W4241589022 @default.
- W3087861066 cites W80257235 @default.
- W3087861066 cites W1988201884 @default.
- W3087861066 doi "https://doi.org/10.2139/ssrn.2933291" @default.
- W3087861066 hasPublicationYear "2017" @default.
- W3087861066 type Work @default.
- W3087861066 sameAs 3087861066 @default.
- W3087861066 citedByCount "2" @default.
- W3087861066 countsByYear W30878610662017 @default.
- W3087861066 crossrefType "journal-article" @default.
- W3087861066 hasAuthorship W3087861066A5004399999 @default.
- W3087861066 hasAuthorship W3087861066A5047325958 @default.
- W3087861066 hasConcept C101276457 @default.
- W3087861066 hasConcept C119857082 @default.
- W3087861066 hasConcept C130721881 @default.
- W3087861066 hasConcept C136197465 @default.
- W3087861066 hasConcept C140781008 @default.
- W3087861066 hasConcept C144133560 @default.
- W3087861066 hasConcept C154945302 @default.
- W3087861066 hasConcept C162324750 @default.
- W3087861066 hasConcept C162853370 @default.
- W3087861066 hasConcept C187736073 @default.
- W3087861066 hasConcept C2522767166 @default.
- W3087861066 hasConcept C2780378061 @default.
- W3087861066 hasConcept C2780451532 @default.
- W3087861066 hasConcept C41008148 @default.
- W3087861066 hasConcept C49937458 @default.
- W3087861066 hasConcept C98825075 @default.
- W3087861066 hasConceptScore W3087861066C101276457 @default.
- W3087861066 hasConceptScore W3087861066C119857082 @default.
- W3087861066 hasConceptScore W3087861066C130721881 @default.
- W3087861066 hasConceptScore W3087861066C136197465 @default.
- W3087861066 hasConceptScore W3087861066C140781008 @default.
- W3087861066 hasConceptScore W3087861066C144133560 @default.
- W3087861066 hasConceptScore W3087861066C154945302 @default.
- W3087861066 hasConceptScore W3087861066C162324750 @default.
- W3087861066 hasConceptScore W3087861066C162853370 @default.
- W3087861066 hasConceptScore W3087861066C187736073 @default.
- W3087861066 hasConceptScore W3087861066C2522767166 @default.
- W3087861066 hasConceptScore W3087861066C2780378061 @default.
- W3087861066 hasConceptScore W3087861066C2780451532 @default.
- W3087861066 hasConceptScore W3087861066C41008148 @default.
- W3087861066 hasConceptScore W3087861066C49937458 @default.
- W3087861066 hasConceptScore W3087861066C98825075 @default.
- W3087861066 hasLocation W30878610661 @default.
- W3087861066 hasOpenAccess W3087861066 @default.
- W3087861066 hasPrimaryLocation W30878610661 @default.
- W3087861066 hasRelatedWork W117061049 @default.
- W3087861066 hasRelatedWork W1482822770 @default.
- W3087861066 hasRelatedWork W1676353686 @default.
- W3087861066 hasRelatedWork W2076313627 @default.
- W3087861066 hasRelatedWork W2098812910 @default.
- W3087861066 hasRelatedWork W2139882153 @default.
- W3087861066 hasRelatedWork W2171702328 @default.
- W3087861066 hasRelatedWork W2189271473 @default.
- W3087861066 hasRelatedWork W229614685 @default.
- W3087861066 hasRelatedWork W2502912625 @default.
- W3087861066 hasRelatedWork W2538187747 @default.
- W3087861066 hasRelatedWork W2751524443 @default.
- W3087861066 hasRelatedWork W2793879779 @default.
- W3087861066 hasRelatedWork W2907573203 @default.
- W3087861066 hasRelatedWork W2972518767 @default.
- W3087861066 hasRelatedWork W3140029622 @default.
- W3087861066 hasRelatedWork W3185638518 @default.
- W3087861066 hasRelatedWork W768111943 @default.
- W3087861066 hasRelatedWork W7996007 @default.
- W3087861066 hasRelatedWork W3123283936 @default.
- W3087861066 isParatext "false" @default.
- W3087861066 isRetracted "false" @default.
- W3087861066 magId "3087861066" @default.
- W3087861066 workType "article" @default.