Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087873031> ?p ?o ?g. }
- W3087873031 endingPage "334" @default.
- W3087873031 startingPage "320" @default.
- W3087873031 abstract "Genomic best linear-unbiased prediction (GBLUP) assumes equal variance for all marker effects, which is suitable for traits that conform to the infinitesimal model. For traits controlled by major genes, Bayesian methods with shrinkage priors or genome-wide association study (GWAS) methods can be used to identify causal variants effectively. The information from Bayesian/GWAS methods can be used to construct the weighted genomic relationship matrix (G). However, it remains unclear which methods perform best for traits varying in genetic architecture. Therefore, we developed several methods to optimize the performance of weighted GBLUP and compare them with other available methods using simulated and real data sets. First, two types of methods (marker effects with local shrinkage or normal prior) were used to obtain test statistics and estimates for each marker effect. Second, three weighted G matrices were constructed based on the marker information from the first step: (1) the genomic-feature-weighted G, (2) the estimated marker-variance-weighted G, and (3) the absolute value of the estimated marker-effect-weighted G. Following the above process, six different weighted GBLUP methods (local shrinkage/normal-prior GF/EV/AEWGBLUP) were proposed for genomic prediction. Analyses with both simulated and real data demonstrated that these options offer flexibility for optimizing the weighted GBLUP for traits with a broad spectrum of genetic architectures. The advantage of weighting methods over GBLUP in terms of accuracy was trait dependant, ranging from 14.8% to marginal for simulated traits and from 44% to marginal for real traits. Local-shrinkage prior EVWGBLUP is superior for traits mainly controlled by loci of a large effect. Normal-prior AEWGBLUP performs well for traits mainly controlled by loci of moderate effect. For traits controlled by some loci with large effects (explain 25–50% genetic variance) and a range of loci with small effects, GFWGBLUP has advantages. In conclusion, the optimal weighted GBLUP method for genomic selection should take both the genetic architecture and number of QTLs of traits into consideration carefully." @default.
- W3087873031 created "2020-10-01" @default.
- W3087873031 creator A5012252352 @default.
- W3087873031 creator A5022650305 @default.
- W3087873031 creator A5036975470 @default.
- W3087873031 creator A5041366828 @default.
- W3087873031 creator A5068145638 @default.
- W3087873031 date "2020-09-26" @default.
- W3087873031 modified "2023-10-16" @default.
- W3087873031 title "Efficient weighting methods for genomic best linear-unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits" @default.
- W3087873031 cites W1523985187 @default.
- W3087873031 cites W1645227518 @default.
- W3087873031 cites W1901161165 @default.
- W3087873031 cites W1928998639 @default.
- W3087873031 cites W1970459140 @default.
- W3087873031 cites W1986084863 @default.
- W3087873031 cites W1989943831 @default.
- W3087873031 cites W2008933956 @default.
- W3087873031 cites W2023673366 @default.
- W3087873031 cites W2034846276 @default.
- W3087873031 cites W2043711834 @default.
- W3087873031 cites W2049175056 @default.
- W3087873031 cites W2067715889 @default.
- W3087873031 cites W2077946779 @default.
- W3087873031 cites W2099666134 @default.
- W3087873031 cites W2101272289 @default.
- W3087873031 cites W2102087753 @default.
- W3087873031 cites W2107289228 @default.
- W3087873031 cites W2110787179 @default.
- W3087873031 cites W2110974472 @default.
- W3087873031 cites W2114044285 @default.
- W3087873031 cites W2119805873 @default.
- W3087873031 cites W2128412032 @default.
- W3087873031 cites W2133840126 @default.
- W3087873031 cites W2140319434 @default.
- W3087873031 cites W2141916112 @default.
- W3087873031 cites W2142220815 @default.
- W3087873031 cites W2156951530 @default.
- W3087873031 cites W2161620511 @default.
- W3087873031 cites W2161831898 @default.
- W3087873031 cites W2162844534 @default.
- W3087873031 cites W2164050502 @default.
- W3087873031 cites W2164545188 @default.
- W3087873031 cites W2166033750 @default.
- W3087873031 cites W2170554520 @default.
- W3087873031 cites W2219318223 @default.
- W3087873031 cites W2230169343 @default.
- W3087873031 cites W2241831764 @default.
- W3087873031 cites W2252512272 @default.
- W3087873031 cites W2511378584 @default.
- W3087873031 cites W2554481646 @default.
- W3087873031 cites W2557913812 @default.
- W3087873031 cites W2575597151 @default.
- W3087873031 cites W2576112957 @default.
- W3087873031 cites W2736745869 @default.
- W3087873031 cites W2746592810 @default.
- W3087873031 cites W2758325521 @default.
- W3087873031 cites W2773459529 @default.
- W3087873031 cites W2785607024 @default.
- W3087873031 cites W2804206732 @default.
- W3087873031 cites W2887879627 @default.
- W3087873031 cites W2891570876 @default.
- W3087873031 cites W2949923824 @default.
- W3087873031 cites W2995312470 @default.
- W3087873031 doi "https://doi.org/10.1038/s41437-020-00372-y" @default.
- W3087873031 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8027853" @default.
- W3087873031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32980863" @default.
- W3087873031 hasPublicationYear "2020" @default.
- W3087873031 type Work @default.
- W3087873031 sameAs 3087873031 @default.
- W3087873031 citedByCount "13" @default.
- W3087873031 countsByYear W30878730312021 @default.
- W3087873031 countsByYear W30878730312022 @default.
- W3087873031 countsByYear W30878730312023 @default.
- W3087873031 crossrefType "journal-article" @default.
- W3087873031 hasAuthorship W3087873031A5012252352 @default.
- W3087873031 hasAuthorship W3087873031A5022650305 @default.
- W3087873031 hasAuthorship W3087873031A5036975470 @default.
- W3087873031 hasAuthorship W3087873031A5041366828 @default.
- W3087873031 hasAuthorship W3087873031A5068145638 @default.
- W3087873031 hasBestOaLocation W30878730311 @default.
- W3087873031 hasConcept C103545067 @default.
- W3087873031 hasConcept C104317684 @default.
- W3087873031 hasConcept C105795698 @default.
- W3087873031 hasConcept C106208931 @default.
- W3087873031 hasConcept C107673813 @default.
- W3087873031 hasConcept C126838900 @default.
- W3087873031 hasConcept C135763542 @default.
- W3087873031 hasConcept C153209595 @default.
- W3087873031 hasConcept C154945302 @default.
- W3087873031 hasConcept C163175372 @default.
- W3087873031 hasConcept C183115368 @default.
- W3087873031 hasConcept C33923547 @default.
- W3087873031 hasConcept C41008148 @default.
- W3087873031 hasConcept C54355233 @default.
- W3087873031 hasConcept C70721500 @default.
- W3087873031 hasConcept C71924100 @default.
- W3087873031 hasConcept C81917197 @default.