Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087902527> ?p ?o ?g. }
- W3087902527 endingPage "106417" @default.
- W3087902527 startingPage "106417" @default.
- W3087902527 abstract "The development of condition monitoring (CM) systems of induction machines (IMs) is essential for the industry because the early fault detection would help engineers to optimise maintenance plans. However, the use of several IMs to test and validate the fault diagnosis methods developed requires also costly test benches that, anyway, often face limitations in the range of faults and operating conditions to be tested. To avoid it, the use of accurate models such as those based on finite element method (FEM) would reduce the major drawbacks of test benches but their inability to execute FEM models in real time largely reduces their application in the development of on-line continuous monitoring systems. To alleviate this problem a hybrid FEM-analytical model has been proposed. It uses an analytical model that can be run in real-time in a hardware in the loop (HIL) system, after its parameters have been computed through FEM simulations. In this way, the proposed model provides high accuracy but at the cost of long simulation times and high computational costs (both computing power and memory resources) to compute the IM parameters. This work aims at reducing these drawbacks. In particular, a model based on sparse identification techniques is proposed. The method balances complexity and accuracy by selecting a sparse model that reduces the number of FEM simulations to accurately compute the coupling parameters of an IM model with different fault severity degrees. Particularly, the proposed methodology has been applied to develop models with abnormal eccentricity levels as this fault is related to development of mechanical faults that produce most of IM breakdowns." @default.
- W3087902527 created "2020-10-01" @default.
- W3087902527 creator A5023337001 @default.
- W3087902527 creator A5046852148 @default.
- W3087902527 creator A5049320170 @default.
- W3087902527 creator A5077806448 @default.
- W3087902527 creator A5083504898 @default.
- W3087902527 date "2021-02-01" @default.
- W3087902527 modified "2023-10-14" @default.
- W3087902527 title "Model reduction based on sparse identification techniques for induction machines: Towards the real time and accuracy-guaranteed simulation of faulty induction machines" @default.
- W3087902527 cites W1190913610 @default.
- W3087902527 cites W1417251144 @default.
- W3087902527 cites W1616777344 @default.
- W3087902527 cites W1647609603 @default.
- W3087902527 cites W1985658632 @default.
- W3087902527 cites W1989607427 @default.
- W3087902527 cites W2004878620 @default.
- W3087902527 cites W2015969647 @default.
- W3087902527 cites W2027325459 @default.
- W3087902527 cites W2057075223 @default.
- W3087902527 cites W2088108820 @default.
- W3087902527 cites W2139853183 @default.
- W3087902527 cites W2142319860 @default.
- W3087902527 cites W2165294818 @default.
- W3087902527 cites W2177766920 @default.
- W3087902527 cites W2206785415 @default.
- W3087902527 cites W2342934085 @default.
- W3087902527 cites W2345236397 @default.
- W3087902527 cites W2398057971 @default.
- W3087902527 cites W2401179671 @default.
- W3087902527 cites W2401641808 @default.
- W3087902527 cites W2491489582 @default.
- W3087902527 cites W2498158917 @default.
- W3087902527 cites W2520102430 @default.
- W3087902527 cites W2582337578 @default.
- W3087902527 cites W2600040096 @default.
- W3087902527 cites W2725085155 @default.
- W3087902527 cites W2737649582 @default.
- W3087902527 cites W2772942833 @default.
- W3087902527 cites W2772997070 @default.
- W3087902527 cites W2789764336 @default.
- W3087902527 cites W2936849665 @default.
- W3087902527 cites W2965367641 @default.
- W3087902527 cites W2979507113 @default.
- W3087902527 doi "https://doi.org/10.1016/j.ijepes.2020.106417" @default.
- W3087902527 hasPublicationYear "2021" @default.
- W3087902527 type Work @default.
- W3087902527 sameAs 3087902527 @default.
- W3087902527 citedByCount "10" @default.
- W3087902527 countsByYear W30879025272021 @default.
- W3087902527 countsByYear W30879025272022 @default.
- W3087902527 countsByYear W30879025272023 @default.
- W3087902527 crossrefType "journal-article" @default.
- W3087902527 hasAuthorship W3087902527A5023337001 @default.
- W3087902527 hasAuthorship W3087902527A5046852148 @default.
- W3087902527 hasAuthorship W3087902527A5049320170 @default.
- W3087902527 hasAuthorship W3087902527A5077806448 @default.
- W3087902527 hasAuthorship W3087902527A5083504898 @default.
- W3087902527 hasBestOaLocation W30879025272 @default.
- W3087902527 hasConcept C111335779 @default.
- W3087902527 hasConcept C116834253 @default.
- W3087902527 hasConcept C119599485 @default.
- W3087902527 hasConcept C127313418 @default.
- W3087902527 hasConcept C127413603 @default.
- W3087902527 hasConcept C135628077 @default.
- W3087902527 hasConcept C146978453 @default.
- W3087902527 hasConcept C152745839 @default.
- W3087902527 hasConcept C154945302 @default.
- W3087902527 hasConcept C165205528 @default.
- W3087902527 hasConcept C172707124 @default.
- W3087902527 hasConcept C175551986 @default.
- W3087902527 hasConcept C204323151 @default.
- W3087902527 hasConcept C2524010 @default.
- W3087902527 hasConcept C2775846686 @default.
- W3087902527 hasConcept C33923547 @default.
- W3087902527 hasConcept C41008148 @default.
- W3087902527 hasConcept C59822182 @default.
- W3087902527 hasConcept C66938386 @default.
- W3087902527 hasConcept C86803240 @default.
- W3087902527 hasConceptScore W3087902527C111335779 @default.
- W3087902527 hasConceptScore W3087902527C116834253 @default.
- W3087902527 hasConceptScore W3087902527C119599485 @default.
- W3087902527 hasConceptScore W3087902527C127313418 @default.
- W3087902527 hasConceptScore W3087902527C127413603 @default.
- W3087902527 hasConceptScore W3087902527C135628077 @default.
- W3087902527 hasConceptScore W3087902527C146978453 @default.
- W3087902527 hasConceptScore W3087902527C152745839 @default.
- W3087902527 hasConceptScore W3087902527C154945302 @default.
- W3087902527 hasConceptScore W3087902527C165205528 @default.
- W3087902527 hasConceptScore W3087902527C172707124 @default.
- W3087902527 hasConceptScore W3087902527C175551986 @default.
- W3087902527 hasConceptScore W3087902527C204323151 @default.
- W3087902527 hasConceptScore W3087902527C2524010 @default.
- W3087902527 hasConceptScore W3087902527C2775846686 @default.
- W3087902527 hasConceptScore W3087902527C33923547 @default.
- W3087902527 hasConceptScore W3087902527C41008148 @default.
- W3087902527 hasConceptScore W3087902527C59822182 @default.
- W3087902527 hasConceptScore W3087902527C66938386 @default.