Matches in SemOpenAlex for { <https://semopenalex.org/work/W3087924043> ?p ?o ?g. }
- W3087924043 abstract "We examine the performance of the density matrix embedding theory (DMET) recently proposed in [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential that generates a good trial wave function for projecting a large scale original Hamiltonian to a local subsystem with a small number of basis. The resultant ground state of the projected Hamiltonian can locally approximate the true ground state. However, the lack of the variational principle makes it difficult to judge the quality of the choice of the potential. Here we focus on the entanglement spectrum (ES) as a judging criterion; accurate evaluation of the ES guarantees that the corresponding reduced density matrix well reproduces all physical quantities on the local subsystem. We apply the DMET to the Hubbard model on the one-dimensional chain, zigzag chain, and triangular lattice and test several variants of potentials and cost functions. It turns out that ES serves as a more sensitive quantity than the energy and double occupancy to probe the quality of the DMET outcomes. A symmetric potential reproduces the ES of the phase that continues from a noninteracting limit. The Mott transition as well as symmetry-breaking transitions can be detected by the singularities in the ES. However, the details of the ES in the strongly interacting parameter region depends much on these variants, meaning that the present DMET algorithm allowing for numerous variant is insufficient to fully characterize the particular phases that require characterization by the ES." @default.
- W3087924043 created "2020-10-01" @default.
- W3087924043 creator A5046460991 @default.
- W3087924043 creator A5056916344 @default.
- W3087924043 date "2020-12-03" @default.
- W3087924043 modified "2023-10-17" @default.
- W3087924043 title "Comparative study of the density matrix embedding theory for Hubbard models" @default.
- W3087924043 cites W1486204113 @default.
- W3087924043 cites W1523702197 @default.
- W3087924043 cites W1527746356 @default.
- W3087924043 cites W1538602872 @default.
- W3087924043 cites W1588552321 @default.
- W3087924043 cites W1593094336 @default.
- W3087924043 cites W1849067288 @default.
- W3087924043 cites W1921556867 @default.
- W3087924043 cites W1965092181 @default.
- W3087924043 cites W1966342201 @default.
- W3087924043 cites W1971205171 @default.
- W3087924043 cites W1978959648 @default.
- W3087924043 cites W1983596827 @default.
- W3087924043 cites W1983733475 @default.
- W3087924043 cites W1987000227 @default.
- W3087924043 cites W1988150410 @default.
- W3087924043 cites W1990516747 @default.
- W3087924043 cites W1996149646 @default.
- W3087924043 cites W1996508524 @default.
- W3087924043 cites W1997498455 @default.
- W3087924043 cites W2002821365 @default.
- W3087924043 cites W2006229259 @default.
- W3087924043 cites W2007040477 @default.
- W3087924043 cites W2008348370 @default.
- W3087924043 cites W2008688355 @default.
- W3087924043 cites W2013097733 @default.
- W3087924043 cites W2016407890 @default.
- W3087924043 cites W2017642011 @default.
- W3087924043 cites W2019024022 @default.
- W3087924043 cites W2021328865 @default.
- W3087924043 cites W2022352914 @default.
- W3087924043 cites W2023622804 @default.
- W3087924043 cites W2027768904 @default.
- W3087924043 cites W2029499875 @default.
- W3087924043 cites W2030976617 @default.
- W3087924043 cites W2034447914 @default.
- W3087924043 cites W2037034135 @default.
- W3087924043 cites W2037768897 @default.
- W3087924043 cites W2039001221 @default.
- W3087924043 cites W2039991746 @default.
- W3087924043 cites W2042990147 @default.
- W3087924043 cites W2046085925 @default.
- W3087924043 cites W2046204756 @default.
- W3087924043 cites W2046439097 @default.
- W3087924043 cites W2047240241 @default.
- W3087924043 cites W2048600991 @default.
- W3087924043 cites W2049719036 @default.
- W3087924043 cites W2055519393 @default.
- W3087924043 cites W2063305886 @default.
- W3087924043 cites W2063980555 @default.
- W3087924043 cites W2064354643 @default.
- W3087924043 cites W2068367705 @default.
- W3087924043 cites W2069840277 @default.
- W3087924043 cites W2072808339 @default.
- W3087924043 cites W2076694569 @default.
- W3087924043 cites W2077040005 @default.
- W3087924043 cites W2079305833 @default.
- W3087924043 cites W2079971203 @default.
- W3087924043 cites W2081202338 @default.
- W3087924043 cites W2082257352 @default.
- W3087924043 cites W2083297367 @default.
- W3087924043 cites W2083372383 @default.
- W3087924043 cites W2090609758 @default.
- W3087924043 cites W2091232131 @default.
- W3087924043 cites W2092315854 @default.
- W3087924043 cites W2103622306 @default.
- W3087924043 cites W2120998799 @default.
- W3087924043 cites W2130274942 @default.
- W3087924043 cites W2142086541 @default.
- W3087924043 cites W2146481974 @default.
- W3087924043 cites W2153525458 @default.
- W3087924043 cites W2167325579 @default.
- W3087924043 cites W2168101857 @default.
- W3087924043 cites W2230728100 @default.
- W3087924043 cites W2238928293 @default.
- W3087924043 cites W2262244200 @default.
- W3087924043 cites W2270797738 @default.
- W3087924043 cites W2313379503 @default.
- W3087924043 cites W2317586084 @default.
- W3087924043 cites W2319677505 @default.
- W3087924043 cites W2321862980 @default.
- W3087924043 cites W2333165118 @default.
- W3087924043 cites W2473781230 @default.
- W3087924043 cites W2508454936 @default.
- W3087924043 cites W2601087287 @default.
- W3087924043 cites W2612877928 @default.
- W3087924043 cites W2766850152 @default.
- W3087924043 cites W2778441117 @default.
- W3087924043 cites W2883323302 @default.
- W3087924043 cites W2888854913 @default.
- W3087924043 cites W2899433114 @default.
- W3087924043 cites W2910212630 @default.
- W3087924043 cites W2912248965 @default.