Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088065718> ?p ?o ?g. }
- W3088065718 endingPage "2383" @default.
- W3088065718 startingPage "2372" @default.
- W3088065718 abstract "ConspectusThe identification of reliable, general, and high yielding methods for the formation of C(sp2)–fluorine bonds remains a major challenge for synthetic organic chemists. A very common approach involves nucleophilic aromatic fluorination (SNAr fluorination) reactions of aryl chlorides or nitroarenes. Despite being known for more than a century, traditional SNAr fluorination reactions suffer from significant limitations, particularly on a process scale. These include the high cost of common reagents [e.g., cesium fluoride (CsF)], a requirement for elevated temperatures and long reaction times, poor functional group tolerance, and the need for rigorous exclusion of water. This Account summarizes our collaboration with Corteva Agriscience (previously Dow Agrosciences) to address many of these challenges. This collaboration has provided a platform for fundamental scientific advances involving the development of new methods, reagents, and substrates for mild and high yielding nucleophilic fluorination reactions.Our early studies established that the combination of potassium fluoride (KF) and superstoichiometric tetrabutylammonium chloride (Bu4NCl) serves as a cost-effective alternative to CsF for the SNAr fluorination of chloropicolinate substrates. However, these reactions still require elevated temperatures (>130 °C) and afford moderate yields due to competing decomposition of the substrate and product. The need for high temperature is largely due to slow reaction rates resulting from the low concentration of the active fluorinating reagent [anhydrous tetrabutylammonium fluoride (Bu4NF)] under these conditions. To address this issue, we developed several strategies for generating high concentration solutions of anhydrous tetraalkylammonium fluoride in situ by combining fluorine-containing electrophiles (e.g., hexafluorobenzene, acyl fluorides, sulfonyl fluorides) with tetraalkylammonium nucleophiles (R4NCN or R4NOR). These systems enable SNAr fluorination under unusually mild conditions, affording nearly quantitative yield with chloropicolinate substrates at room temperature. However, the high cost of the electrophiles and the generation of large quantities of byproducts in the R4NF-forming step render this approach unsuitable for process scale applications. As an alternative, we next explored anhydrous tetramethylammonium fluoride (Me4NF) for these transformations. This highly reactive fluoride source can be synthesized directly from inexpensive KF and Me4NCl and then dried by heating under vacuum. Unlike Bu4NF, it is not susceptible to Hofmann elimination. As such, anhydrous Me4NF is stable and isolable, as well as highly effective for the room temperature SNAr fluorination of chloropicolinates and other electron deficient substrates.The studies with anhydrous R4NF drew our attention to another challenge associated with traditional SNAr fluorination reactions: their limitation to substrates bearing resonance electron-withdrawing groups. We hypothesized that this challenge could be addressed by circumventing the Meisenheimer intermediate, a canonical mechanistic feature of SNAr fluorination. By designing reactions that involve an alternative concerted delivery of the fluoride to the ipso C(sp2) center, we developed a deoxyfluorination of arylfluorosulfonates using anhydrous Me4NF. This reaction exhibits a broad scope with respect to the aryl electrophile, with substrates bearing both electron-withdrawing (CN, ester, CF3, Cl) and moderately electron donating (phenyl, alkyl) substituents participating in deoxyfluorination. These deoxyfluorination conditions were also expanded to nonaromatic substrates, including aldehydes and benzylic/aliphatic alcohols.This Account concludes by delineating several ongoing challenges and opportunities in this fast-moving field. For instance, one important future direction will be to address the high moisture sensitivity of these transformations. In addition, the application of these new reagents and methods in the synthesis of pharmaceuticals, agrochemicals, and PET imaging agents will continue to test the versatility and functional group compatibility of these methods." @default.
- W3088065718 created "2020-10-01" @default.
- W3088065718 creator A5003455653 @default.
- W3088065718 creator A5028785945 @default.
- W3088065718 creator A5055990329 @default.
- W3088065718 creator A5090764373 @default.
- W3088065718 date "2020-09-24" @default.
- W3088065718 modified "2023-10-16" @default.
- W3088065718 title "Development of S<sub>N</sub>Ar Nucleophilic Fluorination: A Fruitful Academia-Industry Collaboration" @default.
- W3088065718 cites W1183155069 @default.
- W3088065718 cites W1888548169 @default.
- W3088065718 cites W1969471704 @default.
- W3088065718 cites W1971831634 @default.
- W3088065718 cites W1973311993 @default.
- W3088065718 cites W1973623579 @default.
- W3088065718 cites W1974330170 @default.
- W3088065718 cites W1976866491 @default.
- W3088065718 cites W1977351611 @default.
- W3088065718 cites W1981963314 @default.
- W3088065718 cites W1988331371 @default.
- W3088065718 cites W1991937477 @default.
- W3088065718 cites W1993195042 @default.
- W3088065718 cites W2006683822 @default.
- W3088065718 cites W2009814010 @default.
- W3088065718 cites W2015981085 @default.
- W3088065718 cites W2035437199 @default.
- W3088065718 cites W2038757988 @default.
- W3088065718 cites W2043931801 @default.
- W3088065718 cites W2047340213 @default.
- W3088065718 cites W2057509100 @default.
- W3088065718 cites W2058225143 @default.
- W3088065718 cites W2064625246 @default.
- W3088065718 cites W2070160936 @default.
- W3088065718 cites W2075754107 @default.
- W3088065718 cites W2077163881 @default.
- W3088065718 cites W2084301636 @default.
- W3088065718 cites W2097156359 @default.
- W3088065718 cites W2108558461 @default.
- W3088065718 cites W2116087305 @default.
- W3088065718 cites W2119039945 @default.
- W3088065718 cites W2119298898 @default.
- W3088065718 cites W2179395831 @default.
- W3088065718 cites W2208465844 @default.
- W3088065718 cites W2315944412 @default.
- W3088065718 cites W2319070004 @default.
- W3088065718 cites W2319872377 @default.
- W3088065718 cites W2329487497 @default.
- W3088065718 cites W2333129245 @default.
- W3088065718 cites W2334828163 @default.
- W3088065718 cites W2523431228 @default.
- W3088065718 cites W2549042810 @default.
- W3088065718 cites W2582455051 @default.
- W3088065718 cites W2611545088 @default.
- W3088065718 cites W2754934466 @default.
- W3088065718 cites W2766518285 @default.
- W3088065718 cites W2767681731 @default.
- W3088065718 cites W2912234903 @default.
- W3088065718 cites W2945137288 @default.
- W3088065718 cites W2951252043 @default.
- W3088065718 cites W2965086679 @default.
- W3088065718 cites W2971098561 @default.
- W3088065718 cites W3010565290 @default.
- W3088065718 cites W2038099099 @default.
- W3088065718 doi "https://doi.org/10.1021/acs.accounts.0c00471" @default.
- W3088065718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32969213" @default.
- W3088065718 hasPublicationYear "2020" @default.
- W3088065718 type Work @default.
- W3088065718 sameAs 3088065718 @default.
- W3088065718 citedByCount "33" @default.
- W3088065718 countsByYear W30880657182021 @default.
- W3088065718 countsByYear W30880657182022 @default.
- W3088065718 countsByYear W30880657182023 @default.
- W3088065718 crossrefType "journal-article" @default.
- W3088065718 hasAuthorship W3088065718A5003455653 @default.
- W3088065718 hasAuthorship W3088065718A5028785945 @default.
- W3088065718 hasAuthorship W3088065718A5055990329 @default.
- W3088065718 hasAuthorship W3088065718A5090764373 @default.
- W3088065718 hasConcept C135731615 @default.
- W3088065718 hasConcept C161790260 @default.
- W3088065718 hasConcept C178790620 @default.
- W3088065718 hasConcept C178907741 @default.
- W3088065718 hasConcept C179104552 @default.
- W3088065718 hasConcept C185592680 @default.
- W3088065718 hasConcept C187714232 @default.
- W3088065718 hasConcept C21951064 @default.
- W3088065718 hasConcept C2780828025 @default.
- W3088065718 hasConcept C40875361 @default.
- W3088065718 hasConcept C50027330 @default.
- W3088065718 hasConcept C506198293 @default.
- W3088065718 hasConcept C9061509 @default.
- W3088065718 hasConceptScore W3088065718C135731615 @default.
- W3088065718 hasConceptScore W3088065718C161790260 @default.
- W3088065718 hasConceptScore W3088065718C178790620 @default.
- W3088065718 hasConceptScore W3088065718C178907741 @default.
- W3088065718 hasConceptScore W3088065718C179104552 @default.
- W3088065718 hasConceptScore W3088065718C185592680 @default.
- W3088065718 hasConceptScore W3088065718C187714232 @default.
- W3088065718 hasConceptScore W3088065718C21951064 @default.