Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088093133> ?p ?o ?g. }
- W3088093133 abstract "This article proposes a novel Bayesian binary classification framework for networks with labeled nodes. Our approach is motivated by applications in brain connectome studies, where the overarching goal is to identify both regions of interest (ROIs) in the brain and connections between ROIs that influence how study subjects are classified. We propose a novel binary logistic regression framework with the network as the predictor, and model the associated network coefficient using a novel class of global-local network shrinkage priors. We perform a theoretical analysis of a member of this class of priors (which we call the Network Lasso Prior) and show asymptotically correct classification of networks even when the number of network edges grows faster than the sample size. Two representative members from this class of priors, the Network Lasso prior and the Network Horseshoe prior, are implemented using an efficient Markov Chain Monte Carlo algorithm, and empirically evaluated through simulation studies and the analysis of a real brain connectome dataset." @default.
- W3088093133 created "2020-10-01" @default.
- W3088093133 creator A5014102107 @default.
- W3088093133 creator A5050339889 @default.
- W3088093133 date "2023-01-01" @default.
- W3088093133 modified "2023-10-16" @default.
- W3088093133 title "High-Dimensional Bayesian Network Classification with Network Global-Local Shrinkage Priors" @default.
- W3088093133 cites W1964971529 @default.
- W3088093133 cites W1965115520 @default.
- W3088093133 cites W1974099839 @default.
- W3088093133 cites W1977463935 @default.
- W3088093133 cites W1981608990 @default.
- W3088093133 cites W1982652137 @default.
- W3088093133 cites W1996824494 @default.
- W3088093133 cites W1996919757 @default.
- W3088093133 cites W1999653836 @default.
- W3088093133 cites W2013016035 @default.
- W3088093133 cites W2024665862 @default.
- W3088093133 cites W2025167103 @default.
- W3088093133 cites W2066459332 @default.
- W3088093133 cites W2070987660 @default.
- W3088093133 cites W2079903691 @default.
- W3088093133 cites W2080003562 @default.
- W3088093133 cites W2083905543 @default.
- W3088093133 cites W2099618981 @default.
- W3088093133 cites W2099878672 @default.
- W3088093133 cites W2101135654 @default.
- W3088093133 cites W2101144696 @default.
- W3088093133 cites W2114169935 @default.
- W3088093133 cites W2116006439 @default.
- W3088093133 cites W2117988331 @default.
- W3088093133 cites W2118693417 @default.
- W3088093133 cites W2123082179 @default.
- W3088093133 cites W2130902307 @default.
- W3088093133 cites W2135046866 @default.
- W3088093133 cites W2144799688 @default.
- W3088093133 cites W2147426468 @default.
- W3088093133 cites W2148479386 @default.
- W3088093133 cites W2161723275 @default.
- W3088093133 cites W2162888823 @default.
- W3088093133 cites W2614954696 @default.
- W3088093133 cites W2768228643 @default.
- W3088093133 cites W2885481047 @default.
- W3088093133 cites W2952976857 @default.
- W3088093133 cites W2962787872 @default.
- W3088093133 cites W2963222969 @default.
- W3088093133 cites W2980069674 @default.
- W3088093133 cites W2989602998 @default.
- W3088093133 cites W2999217367 @default.
- W3088093133 cites W3031617338 @default.
- W3088093133 cites W3086546527 @default.
- W3088093133 cites W3098724363 @default.
- W3088093133 cites W3098799846 @default.
- W3088093133 cites W3103712593 @default.
- W3088093133 cites W3105108758 @default.
- W3088093133 cites W3106385100 @default.
- W3088093133 cites W3116730795 @default.
- W3088093133 cites W3203768433 @default.
- W3088093133 cites W4234057457 @default.
- W3088093133 cites W4248681815 @default.
- W3088093133 cites W4294541781 @default.
- W3088093133 cites W4306405614 @default.
- W3088093133 cites W583436438 @default.
- W3088093133 doi "https://doi.org/10.1214/23-ba1378" @default.
- W3088093133 hasPublicationYear "2023" @default.
- W3088093133 type Work @default.
- W3088093133 sameAs 3088093133 @default.
- W3088093133 citedByCount "0" @default.
- W3088093133 crossrefType "journal-article" @default.
- W3088093133 hasAuthorship W3088093133A5014102107 @default.
- W3088093133 hasAuthorship W3088093133A5050339889 @default.
- W3088093133 hasBestOaLocation W30880931331 @default.
- W3088093133 hasConcept C107673813 @default.
- W3088093133 hasConcept C111350023 @default.
- W3088093133 hasConcept C119857082 @default.
- W3088093133 hasConcept C124101348 @default.
- W3088093133 hasConcept C136764020 @default.
- W3088093133 hasConcept C151956035 @default.
- W3088093133 hasConcept C153180895 @default.
- W3088093133 hasConcept C154945302 @default.
- W3088093133 hasConcept C169760540 @default.
- W3088093133 hasConcept C177769412 @default.
- W3088093133 hasConcept C3018011982 @default.
- W3088093133 hasConcept C37616216 @default.
- W3088093133 hasConcept C41008148 @default.
- W3088093133 hasConcept C45715564 @default.
- W3088093133 hasConcept C50644808 @default.
- W3088093133 hasConcept C86803240 @default.
- W3088093133 hasConcept C98763669 @default.
- W3088093133 hasConceptScore W3088093133C107673813 @default.
- W3088093133 hasConceptScore W3088093133C111350023 @default.
- W3088093133 hasConceptScore W3088093133C119857082 @default.
- W3088093133 hasConceptScore W3088093133C124101348 @default.
- W3088093133 hasConceptScore W3088093133C136764020 @default.
- W3088093133 hasConceptScore W3088093133C151956035 @default.
- W3088093133 hasConceptScore W3088093133C153180895 @default.
- W3088093133 hasConceptScore W3088093133C154945302 @default.
- W3088093133 hasConceptScore W3088093133C169760540 @default.
- W3088093133 hasConceptScore W3088093133C177769412 @default.
- W3088093133 hasConceptScore W3088093133C3018011982 @default.