Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088146014> ?p ?o ?g. }
- W3088146014 endingPage "109303" @default.
- W3088146014 startingPage "109303" @default.
- W3088146014 abstract "Purpose To develop and evaluate an automatic measurement model for hip joints based on anteroposterior (AP) pelvic radiography and a deep learning algorithm. Methods A total of 1260 AP pelvic radiographs were included. 1060 radiographs were randomly sampled for training and validation and 200 radiographs were used as the test set. Landmarks for four commonly used parameters, such as the center–edge (CE) angle of Wiberg, Tönnis angle, sharp angle, and femoral head extrusion index (FHEI), were identified and labeled. An encoder-decoder convolutional neural network was developed to output a multi-channel heat map. Measurements were obtained through landmarks on the test set. Right and left hips were analyzed respectively. The mean of each parameter obtained by three radiologists was used as the reference standard. The Percentage of Correct Key points (PCK), intraclass correlation coefficient (ICC), Pearson correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), and Bland-Altman plots were used to determine the performance of deep learning algorithm. Results PCK of the model at 3 mm distance threshold range was from 87 % to 100 %. The CE angle, Tönnis angle, Sharp angle and FHEI of the left hip generated by the model were 29.8°±6.1°, 5.6°±4.2°, 39.0°±3.5° and 19 %±5 %, respectively. The parameters of the right hip were 30.4°±6.1°, 7.1°±4.4°, 38.9°±3.7° and 18 %±5 %. There were good correlation and consistency of the four parameters between the model and the reference standard (ICC 0.83–0.93, r 0.83–0.93, RMSE 0.02–3.27, MAE 0.02–1.79). Conclusions The new developed model based on deep learning algorithm can accurately identify landmarks on AP pelvic radiography and automatically generate parameters of hip joint. It will provide convenience for clinical practice of measurement." @default.
- W3088146014 created "2020-10-01" @default.
- W3088146014 creator A5027297044 @default.
- W3088146014 creator A5031859542 @default.
- W3088146014 creator A5040305341 @default.
- W3088146014 creator A5040401975 @default.
- W3088146014 creator A5044127793 @default.
- W3088146014 creator A5059748507 @default.
- W3088146014 creator A5064685671 @default.
- W3088146014 creator A5076202709 @default.
- W3088146014 date "2020-11-01" @default.
- W3088146014 modified "2023-10-13" @default.
- W3088146014 title "Feasibility of automatic measurements of hip joints based on pelvic radiography and a deep learning algorithm" @default.
- W3088146014 cites W1162764352 @default.
- W3088146014 cites W1971270699 @default.
- W3088146014 cites W2001751833 @default.
- W3088146014 cites W2013296935 @default.
- W3088146014 cites W2030931162 @default.
- W3088146014 cites W2098168187 @default.
- W3088146014 cites W2101093401 @default.
- W3088146014 cites W2122254427 @default.
- W3088146014 cites W2123048696 @default.
- W3088146014 cites W2133308009 @default.
- W3088146014 cites W2143292833 @default.
- W3088146014 cites W2146259878 @default.
- W3088146014 cites W2147774871 @default.
- W3088146014 cites W2168034454 @default.
- W3088146014 cites W2189154881 @default.
- W3088146014 cites W2346062110 @default.
- W3088146014 cites W2621007086 @default.
- W3088146014 cites W2757960316 @default.
- W3088146014 cites W2766766852 @default.
- W3088146014 cites W2777206657 @default.
- W3088146014 cites W2782178373 @default.
- W3088146014 cites W2789956930 @default.
- W3088146014 cites W2792023360 @default.
- W3088146014 cites W2900371303 @default.
- W3088146014 cites W2925288829 @default.
- W3088146014 cites W2936692422 @default.
- W3088146014 cites W2963521553 @default.
- W3088146014 cites W4229783881 @default.
- W3088146014 cites W4239968927 @default.
- W3088146014 doi "https://doi.org/10.1016/j.ejrad.2020.109303" @default.
- W3088146014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33017773" @default.
- W3088146014 hasPublicationYear "2020" @default.
- W3088146014 type Work @default.
- W3088146014 sameAs 3088146014 @default.
- W3088146014 citedByCount "18" @default.
- W3088146014 countsByYear W30881460142021 @default.
- W3088146014 countsByYear W30881460142022 @default.
- W3088146014 countsByYear W30881460142023 @default.
- W3088146014 crossrefType "journal-article" @default.
- W3088146014 hasAuthorship W3088146014A5027297044 @default.
- W3088146014 hasAuthorship W3088146014A5031859542 @default.
- W3088146014 hasAuthorship W3088146014A5040305341 @default.
- W3088146014 hasAuthorship W3088146014A5040401975 @default.
- W3088146014 hasAuthorship W3088146014A5044127793 @default.
- W3088146014 hasAuthorship W3088146014A5059748507 @default.
- W3088146014 hasAuthorship W3088146014A5064685671 @default.
- W3088146014 hasAuthorship W3088146014A5076202709 @default.
- W3088146014 hasConcept C104709138 @default.
- W3088146014 hasConcept C105795698 @default.
- W3088146014 hasConcept C11413529 @default.
- W3088146014 hasConcept C126838900 @default.
- W3088146014 hasConcept C139945424 @default.
- W3088146014 hasConcept C154945302 @default.
- W3088146014 hasConcept C171606756 @default.
- W3088146014 hasConcept C22679943 @default.
- W3088146014 hasConcept C2780092901 @default.
- W3088146014 hasConcept C29694066 @default.
- W3088146014 hasConcept C2989005 @default.
- W3088146014 hasConcept C33923547 @default.
- W3088146014 hasConcept C36454342 @default.
- W3088146014 hasConcept C41008148 @default.
- W3088146014 hasConcept C55078378 @default.
- W3088146014 hasConcept C70410870 @default.
- W3088146014 hasConcept C71924100 @default.
- W3088146014 hasConceptScore W3088146014C104709138 @default.
- W3088146014 hasConceptScore W3088146014C105795698 @default.
- W3088146014 hasConceptScore W3088146014C11413529 @default.
- W3088146014 hasConceptScore W3088146014C126838900 @default.
- W3088146014 hasConceptScore W3088146014C139945424 @default.
- W3088146014 hasConceptScore W3088146014C154945302 @default.
- W3088146014 hasConceptScore W3088146014C171606756 @default.
- W3088146014 hasConceptScore W3088146014C22679943 @default.
- W3088146014 hasConceptScore W3088146014C2780092901 @default.
- W3088146014 hasConceptScore W3088146014C29694066 @default.
- W3088146014 hasConceptScore W3088146014C2989005 @default.
- W3088146014 hasConceptScore W3088146014C33923547 @default.
- W3088146014 hasConceptScore W3088146014C36454342 @default.
- W3088146014 hasConceptScore W3088146014C41008148 @default.
- W3088146014 hasConceptScore W3088146014C55078378 @default.
- W3088146014 hasConceptScore W3088146014C70410870 @default.
- W3088146014 hasConceptScore W3088146014C71924100 @default.
- W3088146014 hasLocation W30881460141 @default.
- W3088146014 hasOpenAccess W3088146014 @default.
- W3088146014 hasPrimaryLocation W30881460141 @default.
- W3088146014 hasRelatedWork W1036938216 @default.