Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088146750> ?p ?o ?g. }
- W3088146750 endingPage "3120" @default.
- W3088146750 startingPage "3120" @default.
- W3088146750 abstract "A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest." @default.
- W3088146750 created "2020-10-01" @default.
- W3088146750 creator A5008716861 @default.
- W3088146750 creator A5009738904 @default.
- W3088146750 creator A5031597539 @default.
- W3088146750 creator A5066225142 @default.
- W3088146750 creator A5086988988 @default.
- W3088146750 creator A5089554458 @default.
- W3088146750 date "2020-09-23" @default.
- W3088146750 modified "2023-10-16" @default.
- W3088146750 title "Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China" @default.
- W3088146750 cites W1886290262 @default.
- W3088146750 cites W1970253947 @default.
- W3088146750 cites W1975213214 @default.
- W3088146750 cites W1978617972 @default.
- W3088146750 cites W1985042172 @default.
- W3088146750 cites W1996585409 @default.
- W3088146750 cites W1999803596 @default.
- W3088146750 cites W2008950984 @default.
- W3088146750 cites W2029158737 @default.
- W3088146750 cites W2044465660 @default.
- W3088146750 cites W2063623478 @default.
- W3088146750 cites W2072250737 @default.
- W3088146750 cites W2101678239 @default.
- W3088146750 cites W2110133912 @default.
- W3088146750 cites W2111332743 @default.
- W3088146750 cites W2117835930 @default.
- W3088146750 cites W2122825721 @default.
- W3088146750 cites W2138973222 @default.
- W3088146750 cites W2147924102 @default.
- W3088146750 cites W2160615957 @default.
- W3088146750 cites W2201274797 @default.
- W3088146750 cites W2214058817 @default.
- W3088146750 cites W2261764510 @default.
- W3088146750 cites W2327914372 @default.
- W3088146750 cites W2409620547 @default.
- W3088146750 cites W2585014453 @default.
- W3088146750 cites W2596981200 @default.
- W3088146750 cites W2671790725 @default.
- W3088146750 cites W2739323823 @default.
- W3088146750 cites W2742500659 @default.
- W3088146750 cites W2746485780 @default.
- W3088146750 cites W2763867874 @default.
- W3088146750 cites W2808407256 @default.
- W3088146750 cites W2889628655 @default.
- W3088146750 cites W2889645228 @default.
- W3088146750 cites W2896252587 @default.
- W3088146750 cites W2907893716 @default.
- W3088146750 cites W2910222270 @default.
- W3088146750 cites W2942582461 @default.
- W3088146750 cites W2946670873 @default.
- W3088146750 cites W2967896173 @default.
- W3088146750 cites W2971456001 @default.
- W3088146750 cites W2971982243 @default.
- W3088146750 cites W2972170785 @default.
- W3088146750 cites W2980338915 @default.
- W3088146750 cites W3002432836 @default.
- W3088146750 cites W3037997402 @default.
- W3088146750 cites W4249179842 @default.
- W3088146750 cites W998093192 @default.
- W3088146750 doi "https://doi.org/10.3390/rs12193120" @default.
- W3088146750 hasPublicationYear "2020" @default.
- W3088146750 type Work @default.
- W3088146750 sameAs 3088146750 @default.
- W3088146750 citedByCount "31" @default.
- W3088146750 countsByYear W30881467502021 @default.
- W3088146750 countsByYear W30881467502022 @default.
- W3088146750 countsByYear W30881467502023 @default.
- W3088146750 crossrefType "journal-article" @default.
- W3088146750 hasAuthorship W3088146750A5008716861 @default.
- W3088146750 hasAuthorship W3088146750A5009738904 @default.
- W3088146750 hasAuthorship W3088146750A5031597539 @default.
- W3088146750 hasAuthorship W3088146750A5066225142 @default.
- W3088146750 hasAuthorship W3088146750A5086988988 @default.
- W3088146750 hasAuthorship W3088146750A5089554458 @default.
- W3088146750 hasBestOaLocation W30881467501 @default.
- W3088146750 hasConcept C100970517 @default.
- W3088146750 hasConcept C18903297 @default.
- W3088146750 hasConcept C205649164 @default.
- W3088146750 hasConcept C2778102629 @default.
- W3088146750 hasConcept C2778755073 @default.
- W3088146750 hasConcept C2779050236 @default.
- W3088146750 hasConcept C2994302886 @default.
- W3088146750 hasConcept C39432304 @default.
- W3088146750 hasConcept C58640448 @default.
- W3088146750 hasConcept C62649853 @default.
- W3088146750 hasConcept C68874143 @default.
- W3088146750 hasConcept C86803240 @default.
- W3088146750 hasConcept C87360688 @default.
- W3088146750 hasConceptScore W3088146750C100970517 @default.
- W3088146750 hasConceptScore W3088146750C18903297 @default.
- W3088146750 hasConceptScore W3088146750C205649164 @default.
- W3088146750 hasConceptScore W3088146750C2778102629 @default.
- W3088146750 hasConceptScore W3088146750C2778755073 @default.
- W3088146750 hasConceptScore W3088146750C2779050236 @default.
- W3088146750 hasConceptScore W3088146750C2994302886 @default.
- W3088146750 hasConceptScore W3088146750C39432304 @default.
- W3088146750 hasConceptScore W3088146750C58640448 @default.