Matches in SemOpenAlex for { <https://semopenalex.org/work/W3088234369> ?p ?o ?g. }
- W3088234369 endingPage "5639" @default.
- W3088234369 startingPage "5623" @default.
- W3088234369 abstract "Label information plays an important role in supervised high-resolution remote sensing (HRRS) image scene classification. However, the labels of a dataset are probably unreliable and may contain “noisy” labels. Focusing on uncertain labels problem, a covariance matrix representation-based noisy label model (CMR-NLD) is designed for HRRS image scene classification. The main steps are as follows. First, a pretrained convolutional neural network model is employed to extract the scene images deep features and a principal component analysis based dimensionality reduction method is applied to the first fully connected layer to reduce the computational complexity. Then, the noisy training set is constructed by randomly selecting samples into a specific class from other classes samples. We use this set to simulate the actual situation of tag noise to simulate the actual situation of label noise. Second, the covariance between noisy training samples is calculated to obtain the corresponding covariance matrix, and the average value of the obtained covariance matrix is calculated by rows. As a feature of the matrix form, it can both enlarge the subtle differences between different classes and reduce the visual differences of scene images from the same semantic classes. Then, a decision threshold is set to realize the detection and removal of noisy labels. Finally, the improved training sample set will be evaluated by a support vector machine classifier to demonstrate the proposed detector's effectiveness. Experimental results indicate that the proposed method indeed shows great improvement in noisy label detection of HRRS image scene classification." @default.
- W3088234369 created "2020-10-01" @default.
- W3088234369 creator A5022585062 @default.
- W3088234369 creator A5031368188 @default.
- W3088234369 creator A5037075182 @default.
- W3088234369 creator A5042231008 @default.
- W3088234369 creator A5063503748 @default.
- W3088234369 date "2020-01-01" @default.
- W3088234369 modified "2023-10-01" @default.
- W3088234369 title "Robust Learning of Mislabeled Training Samples for Remote Sensing Image Scene Classification" @default.
- W3088234369 cites W1549083695 @default.
- W3088234369 cites W1958291604 @default.
- W3088234369 cites W2003120146 @default.
- W3088234369 cites W2024106491 @default.
- W3088234369 cites W2070452328 @default.
- W3088234369 cites W2079055733 @default.
- W3088234369 cites W2083066957 @default.
- W3088234369 cites W2097117768 @default.
- W3088234369 cites W2098676252 @default.
- W3088234369 cites W2117539524 @default.
- W3088234369 cites W2119138423 @default.
- W3088234369 cites W2133848164 @default.
- W3088234369 cites W2144990628 @default.
- W3088234369 cites W2153635508 @default.
- W3088234369 cites W2160522378 @default.
- W3088234369 cites W2194775991 @default.
- W3088234369 cites W2268837224 @default.
- W3088234369 cites W2291068538 @default.
- W3088234369 cites W2342880667 @default.
- W3088234369 cites W2347115704 @default.
- W3088234369 cites W2411876745 @default.
- W3088234369 cites W2596506150 @default.
- W3088234369 cites W2618530766 @default.
- W3088234369 cites W2620429297 @default.
- W3088234369 cites W2750827587 @default.
- W3088234369 cites W2753248899 @default.
- W3088234369 cites W2754507318 @default.
- W3088234369 cites W2761917471 @default.
- W3088234369 cites W2765622256 @default.
- W3088234369 cites W2766531630 @default.
- W3088234369 cites W2782420567 @default.
- W3088234369 cites W2790898247 @default.
- W3088234369 cites W2793387205 @default.
- W3088234369 cites W2793638091 @default.
- W3088234369 cites W2793645503 @default.
- W3088234369 cites W2794948653 @default.
- W3088234369 cites W2799870441 @default.
- W3088234369 cites W2810874828 @default.
- W3088234369 cites W2829067510 @default.
- W3088234369 cites W2889773939 @default.
- W3088234369 cites W2890022946 @default.
- W3088234369 cites W2945336884 @default.
- W3088234369 cites W2949034001 @default.
- W3088234369 cites W2954156245 @default.
- W3088234369 cites W2963183385 @default.
- W3088234369 cites W2965953657 @default.
- W3088234369 cites W2972614519 @default.
- W3088234369 cites W2983384552 @default.
- W3088234369 cites W2983986724 @default.
- W3088234369 cites W2986076908 @default.
- W3088234369 cites W2989881034 @default.
- W3088234369 cites W2998142089 @default.
- W3088234369 cites W2999421733 @default.
- W3088234369 cites W3017351200 @default.
- W3088234369 cites W3019659794 @default.
- W3088234369 cites W3025582806 @default.
- W3088234369 cites W3026303927 @default.
- W3088234369 cites W3100011500 @default.
- W3088234369 cites W3103856189 @default.
- W3088234369 cites W3105577662 @default.
- W3088234369 doi "https://doi.org/10.1109/jstars.2020.3025174" @default.
- W3088234369 hasPublicationYear "2020" @default.
- W3088234369 type Work @default.
- W3088234369 sameAs 3088234369 @default.
- W3088234369 citedByCount "8" @default.
- W3088234369 countsByYear W30882343692022 @default.
- W3088234369 countsByYear W30882343692023 @default.
- W3088234369 crossrefType "journal-article" @default.
- W3088234369 hasAuthorship W3088234369A5022585062 @default.
- W3088234369 hasAuthorship W3088234369A5031368188 @default.
- W3088234369 hasAuthorship W3088234369A5037075182 @default.
- W3088234369 hasAuthorship W3088234369A5042231008 @default.
- W3088234369 hasAuthorship W3088234369A5063503748 @default.
- W3088234369 hasBestOaLocation W30882343691 @default.
- W3088234369 hasConcept C11413529 @default.
- W3088234369 hasConcept C115961682 @default.
- W3088234369 hasConcept C12267149 @default.
- W3088234369 hasConcept C153180895 @default.
- W3088234369 hasConcept C154945302 @default.
- W3088234369 hasConcept C185142706 @default.
- W3088234369 hasConcept C27438332 @default.
- W3088234369 hasConcept C31972630 @default.
- W3088234369 hasConcept C41008148 @default.
- W3088234369 hasConcept C52622490 @default.
- W3088234369 hasConcept C75294576 @default.
- W3088234369 hasConcept C81363708 @default.
- W3088234369 hasConcept C95623464 @default.
- W3088234369 hasConcept C99498987 @default.